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1 Temperature asymptotics for the slip on a plane
approximation

Large times. Introducing a nondimensional temperature rise θ = (T−T0)/(Tw−
T0) and a nondimensional time u = t/tSPw , Equation (9) of the main text is con-
veniently rewritten as

θ(u) =
1

2
√
π

∫ u

0

(1− θ(u′))2√
u− u′

du′. (1)

Unfortunately, we could not find an analytical solution to Equation (1) in
the general case. However, we determined a useful asymptotic solution for large
u by looking for solutions of the form

θ(u) = 1− ε(u) (2)

with ε(u)→ 0 as u→∞. Equation (1) is then rewritten as

1− ε(u) =
1

2
√
π

∫ u

0

ε(u′)2√
u− u′

du′. (3)

This can be solved approximately by looking for simple expressions for ε(u)
which ensure that leading order terms on each side are balanced correctly. In a
first approximation, we should find ε(u) so that the integral on the l.h.s. is of
O(1). By inspecting the integral on the l.h.s., we can see that ε(u) ∝ u−1/4 will
indeed integrate to a constant. Matching the leading order terms leads to the
following asymptotic approximation for ε(u):

ε(u) ≈
√

2(πu)−1/4. (4)
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A better approximation can be found by trying to match higher order terms,
namely a term in u−1/4 on the r.h.s. We then use ε(u) = au−1/4 + bu−1/2,
compute the integral (discarding singular terms appearing only for small u,
where our approximation is not relevant) and match the first two terms, which
lead to the following approximation:

ε(u) ≈
√

2(πu)−1/4 − Γ(3/4)

Γ(1/4)
u−1/2, (5)

or simply ε(u) ≈ (1.0623)u−1/4 − (0.3380)u−1/2.

Early times. In that case we look for solutions θ(u) of Equation (1) for small
u. Linearising the integrand for small u (and therefore for small θ(u)), and
integrating by parts, we find that

θ(u) ≈
√
u/π − 1√

π

∫ u

0

θ(u′)√
u− u′

du′. (6)

This is a linear Abel integral equation of the second kind for θ, and can be
solved straightforwardly, which yields:

θ(u) ≈ (1/2)
(
1− exp(u)erfc(

√
u)
)
. (7)

2 Fracture energy asymptotics in the slip on
plane limit

Throughout this Section we use a normalised time u = t/tSPw , temperature
θ = (T − T0)/(Tw − T0), strength τ̃ = τ/τ0 and slip rate v = V/Vw0. The
natural characteristic slip scale is therefore δ∗ = Vw0t

SP
w , and the characteristic

scale for fracture energy is G∗ = τ0δ
∗. With these notations, the constitutive

law (Equation 1 in the main text) becomes:

τ̃ = (1− θ)2/v, (8)

and the normalised fracture energy G̃ = G/G∗ is

G̃ =

∫ δ′

0

(τ̃ [δ]− τ̃ [δ′])dδ, (9)

where δ′ = δ/δ∗ is the normalised slip.
At constant slip rate, (9) becomes

G̃ =

∫ u

0

(
(1− θ(u′))2 − (1− θ(u))2

)
du′. (10)
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Small slip, constant slip rate. In the small slip limit, slip-on-a-plane regime,
an approximate form of the fracture energy can be determined by expanding
θ(u) for small u:

θ(u) ≈
√
u/π − u/2, (11)

and then use that approximation in the computation of G̃ in Equation 10. The
result is then

G̃ ≈ 2

3
√
π
u3/2 − π + 1

2π
u2. (12)

Retaining only the leading order term, the dimensional form of (12) reads

G ≈ G∗ 2

3
√
π

(δ′/v)3/2, (13)

which is the same as Equation (15) in the main text.

Large slip, constant slip rate. In a similar fashion, a large time approxi-
mation can be found based on the asymptotic approximation for θ(u) given in
Equation (5). After direct integration of (10), we find:

G̃ ≈ 2

√
u

π
− 6
√

2
Γ(3/4)

Γ(1/4)

(u
π

)1/4
. (14)

Again, retaining only the leading order term yields the following dimensional
form for the fracture energy:

G ≈ 2G∗
√
δ′

πv
, (15)

which is the same as Equation (16) in the main text.

Large slip, dynamic crack solution. For a semi-inifinite shear crack prop-
agating at constant speed, we recall that the elastodynamic equilibrium implies
that

τ(x) =
µ∗

2πVr

∫ ∞
0

V (s)

s− x
ds, (16)

where x is the position from the rupture tip, Vr is the rupture speed and µ∗ is
an elastic shear modulus modified according to the rupture speed (Rice, 1980).
Normalising the position by x∗ = Vrt

SP
w , Equation 16 is rewritten as

τ̃(u) =
µ′

2π

∫ ∞
0

v(u′)

u′ − u
du′, (17)

where

µ′ =
µ∗Vw0

τ0Vr
. (18)

Following Viesca and Garagash (2015), we look for asymptotic solutions of
(17) in the form v(u) = Buλ and τ(u) = −µ′(B/2)cotan(πλ)uλ also satisfying
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(asymptotically for large u) Equation (1) and the constitutive law (8). As
observed in the previous Section, at large u, Equation (1) implies that θ ≈
1−
√

2(πu)−1/4. The constitutive law (8) then implies that:

τ̃ v ≈ 2/
√

(πu). (19)

Using v(u) = Buλ and τ(u) = −µ′(B/2)cotan(πλ)uλ in (19) yields:

λ = −1/4 and B = 2/(µ′1/2π1/4), (20)

so that
v(u) ≈ (2/

√
µ′)(πu)−1/4 and τ̃(u) ≈

√
µ′(πu)−1/4. (21)

The (normalised) slip distance is given by

δ′ =

∫ u

0

v(u′)du′, (22)

from which we compute u ≈ [(3/8)µ′1/2π1/4δ′]4/3. The stress as a function of
slip is therefore given by

τ(δ′) ≈
(

8µ′

3π

)1/3

δ′−1/3, (23)

which can be integrated straightforwadly to yield

G̃(δ′) ≈
(
µ′

3π

)1/3

δ′2/3. (24)

The dimensional form of (24) corresponds to Equation (18) of the main text.

3 Comparison of characteristic scales between
flash heating and thermal pressurisation

In order to compare the weakening produced by flash heating and thermal pres-
surisation, it is instructive to compute the ratio rFH/TP of the characteristic slip
weakening distances associated with each process. In the adiabatic regime, the
ratio is

rAFH/TP =
tAwV

ρc
√

2πw/(fΛ)
, (25)

where Λ denotes the thermal pressurisation factor (Rice, 2006). Assuming that
the friction coefficient f relevant for thermal pressurisation is equal to the initial
friction coefficient before flash heating operates, Equation 25 simplifies to

rFH/TP =
Tw − T0
Tmax − T0

V

Vw0
, (adiabatic) (26)
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where Tmax = σ′0/Λ is the maximum temperature rise associated with adia-
batic, undrained thermal pressurisation (σ′0 denotes the initial effective normal
stress on the fault). For typical crustal parameter values (Brantut and Platt ,
2017), rFH/TP is of the order of 10, which implies that progressive weakening by
adiabatic flash heating occurs over much larger slip distances than thermal pres-
surisation. We note, however, that flash heating has an “instantaneous” effect
(occurring over distances of a few tens of microns) that will always occur first if
V is significantly greater than Vw0 (Brantut and Rice, 2011). Thermal pressuri-
sation therefore dominates the initial weakening only when V . Vw0. This is
the case only for relatively thick gouge layers, since Vw0 increases proportionally
to the number of contacts over which sliding occurs within the gouge.

In the slip-on-a-plane limit, the relevant slip scales for flash heating and
thermal pressurisation are tSPw V and L∗, respectively, where

L∗ =
4α∗

V

(
ρc

fΛ

)2

. (27)

In the expression for L∗, the diffusivity α∗ is a combined hydraulic and ther-
mal diffusivity (e.g. Garagash, 2012). In the limit of large hydraulic diffusivity
compared to thermal diffusivity, which is most likely the case in nature, α∗ is ap-
proximately equal to the hydraulic diffusivity itself. The ratio of characteristic
slip distances for flash heating and thermal pressurisation is therefore

rFH/TP =
α

α∗

(
Tw − T0
Tmax − T0

V

Vw0

f

f0

)2

, (slip-on-a-plane) (28)

where f is the friction coefficient operating during thermal pressursation, and
f0 is the initial friction coefficient before flash heating occurs. The ratio f/f0
is likely less than one, and more critically we generally have α/α∗ � 1, so that
the ratio rFH/TP is much less than 1 for realistic crustal fault properties (see
Viesca and Garagash, 2015; Brantut and Platt , 2017).
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