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Propagation of extended fractures by local 
nucleation and rapid transverse expansion of 
crack-front distortion

T. Cochard    1,2, I. Svetlizky    2 , G. Albertini    3, R. C. Viesca    4, 
S. M. Rubinstein5, F. Spaepen2, C. Yuan6, M. Denolle7, Y-Q. Song    2,8, L. Xiao    1  
& D. A. Weitz    2,9,10 

Fractures are ubiquitous and can lead to the catastrophic material 
failure of materials. Although fracturing in a two-dimensional plane is 
well understood, all fractures are extended in and propagate through 
three-dimensional space. Moreover, their behaviour is complex. Here we 
show that the forward propagation of a fracture front occurs through an 
initial rupture, nucleated at some localized position, followed by a very 
rapid transverse expansion at velocities as high as the Rayleigh-wave speed. 
We study fracturing in a circular geometry that achieves an uninterrupted 
extended fracture front and use a fluid to control the loading conditions that 
determine the amplitude of the forward jump. We find that this amplitude 
correlates with the transverse velocity. Dynamic rupture simulations 
capture the observations for only a high transverse velocity. These results 
highlight the importance of transverse dynamics in the forward propagation 
of an extended fracture.

Fractures occur at all length scales, from those that are familiar to us, 
such as the breaking of a wine glass or a cell-phone screen, to those 
that are geological, such as earthquakes1 or the calving of glaciers2. 
Even with this wide range, some phenomena transcend all length scales 
and provide a basis for understanding the fundamental features of 
fractures. In the simplest case, in two dimensions, the fracture surface is 
approximated by a line and the fracture front is a point. By contrast, an 
extended fracture in three dimensions is a surface that terminates on a 
line, the crack front. When this line is straight and the fracture surface is 
a plane, a two-dimensional (2D) projection adequately describes the full 
three-dimensional (3D) dynamics3. This 2D approximation of fracturing 
is well understood: the stress at the crack tip is described by a universal 

singularity, and the balance between the energy dissipated during frac-
ture formation and the stored elastic energy determines an equation 
of motion for the fracture that provides a complete description of its 
onset and propagation4. However, a more realistic fracture of a mate-
rial in 3D presents a plethora of complex behaviours, which have been 
widely studied yet remain poorly understood at a fundamental level3. 
Any distortion of the crack front out of the fracture plane alters the 
singularity of the stresses and can lead to complex structures imprinted 
on the fracture surface, as inferred by port-mortem observations5–10. 
Even any in-plane distortion of the crack front from a straight line leads 
to complex propagation dynamics due to the interplay between the 
singularity and the curvature of the line. Such distortions can occur 
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front (red) as they propagate radially outward. When the fluid is pure 
water with a viscosity of 1 cP, the fluid front coincides with the fracture 
front and they both expand outwards simultaneously, as shown in 
the series of images in Fig. 1b. To change the loading conditions, we 
increase the fluid viscosity. This induces a distinct lag between the two 
fronts, which allows us to vary the distance between the position where 
the stress is applied and the fracture front, as shown for μ = 400 cP in 
Fig. 1c. To characterize the propagation, we construct kymographs 
by plotting the intensity of each image along a single radial direction 
as a function of time. For the low-viscosity fluid, the fluid front (blue) 
is indistinguishable from the fracture front (red), as shown in Fig. 1d. 
By contrast, for the loading with the high-viscosity fluid, there is dis-
tinct lag between the two fronts, as shown in Fig. 1e. Interestingly, the 
propagation of the fracture front is discontinuous with long pauses of 
no motion followed by rapid forward motion, whereas the propagation 
of the fluid front is continuous. We call this a stick–break instability. 
Although reminiscent of stick–slip-like behaviour for mode I fracture 
under remote loading conditions5,37, such discontinuous motion has 
not been observed before for fluid-driven fracture. The time interval 
between the break events varies and can be as long as a millisecond. 
The forward velocity during the break events is very high, faster than 
our spatio-temporal resolution. The length of the break δλ varies and 
can be as large as 5 mm, in which case the radial velocity is at least 
500 m s−1. The lag between the fluid and the fracture fronts λ varies with 
time as breaks occur but is persistently between 5 and 7 mm (Fig. 1e).  
The time-averaged radial velocities of each front are similar and are 
approximately 3 m s−1. Thus, the break portion of the stick–break behav-
iour leads to very rapid motion of the fracture, and it outruns the slower 
motion of the fluid whose pressure drives the fracture. The motion 
of the fracture then pauses during the stick portion, and suddenly 
resumes at the next break. This behaviour is reminiscent of a nucleation 
process that instigates a break. Although the instantaneous fracture 
velocity can be quite high during the break portion of the motion, the 
average fracture velocity is much lower because of the long pauses 
during the stick portion. Earlier studies of fracture propagation did 
not observe the stick–break instability and, thus, underestimated the 
true velocity of the fracture front10,35.

The stick–break instability is a consequence of the loading condi-
tion for the fracture. Similar behaviour should occur whenever there is a 
gap between the applied stress and the fracture tip. In our experiments, 
the fluid lag can be controlled by the fluid viscosity, with λ increasing 
with μ, as shown by the data points in Fig. 1f. In turn, there is a strong 
correlation between the values of δλ and λ, with the length of the break 
increasing with that of the lag, as shown in Fig. 1g. To determine the 
origin of this behaviour, we consider the stress intensity factor K of a 
fluid-driven penny-shaped fracture (Methods). Here, λ is the difference 
between the crack radius R and the position of the front of the pressur-
ized fluid Rf, as shown in Fig. 1a (bottom). The stress intensity factor 
decreases with increasing lag, as seen in Fig. 1h, which is a plot of K/K0 
as a function of λ/Rf, where K0 is the value of K at λ = 0. We assume that 
the fluid front is stationary during the very short time of a crack jump. 
Thus, K decreases as the crack propagates, and the crack stops when 
K reaches a characteristic value Kc, which is the material toughness38. 
To account for the nucleation behaviour apparent in the stick–break 
instability of the fracture motion, we assume that the crack is initiated 
at a somewhat higher value, Kc + δKc (refs. 5,39), which corresponds 
to a smaller lag, λ − δλ. Because dK(λ)/dλ increases with decreasing λ, 
the length of the break must decrease as the lag decreases, provided 
δKc/Kc remains constant, as can be seen by comparing the open circles 
and the solid points in Fig. 1h. We calculate the dependence of δλ on 
λ assuming δKc/Kc ≈ 12% (Methods) and obtain good agreement with 
the data, as shown by the solid line in Fig. 1g. By incorporating the 
fluid flow in our description of the fracture (Methods), we determine 
the μ dependence of λ and obtain good agreement with the measured 
behaviour, as shown in Fig. 1f.

during slow, quasi-static propagation11, for example, when a steadily 
propagating front encounters heterogeneities in the material fracture 
resistance, which impede the local advance of the crack12–15. Distortions 
may also occur during more rapid propagation, during which material 
inertia leads to wave-mediated interactions along the fracture front14,15, 
so that local asperities lead to the remarkably rapid transverse propa-
gation of these crack-front distortions16–23. More generally, material 
heterogeneities can result in the irregular propagation of a crack front 
in both space and time. Even in the absence of local heterogeneities, 
simulations and theory suggest that it is energetically favourable for 
crack propagation to occur in crystalline materials through a local-
ized bond rupture followed by sequential lateral motion of atomic 
kinks along the crack front rather than through a uniform advance24–30. 
However, detailed experimental observations of the dynamics of crack 
propagation in 3D and the effects of any distortions are difficult and 
have yet to be reported. Any distortion of a crack front precludes the use 
of the approximation of the 2D projection11; thus, to fully understand 
the onset and propagation of fractures, the role of the dynamics of any 
distortions must be investigated.

In this Article, we examine the onset, propagation and arrest of an 
extended fracture. We visualize the dynamics and show experimentally 
that distortions of the crack front are essential. The forward propaga-
tion of a fracture occurs through an initial rupture, nucleated at some 
localized position, which induces high local curvature of the crack 
front. This is followed by the rapid transverse expansion of the crack 
front. The transverse velocity depends on the amplitude of the initial 
distortion, which is controlled by the loading at the crack front. For a 
large distortion, it can be as fast as the velocity of the Rayleigh wave, 
whereas for smaller distortions, the transverse velocity is reduced. 
Interestingly, dynamic rupture simulations reproduce the experi-
mental observations only when the transverse velocity is that of the 
Rayleigh wave. These results highlight the importance of distortions 
and their dynamics in fracture propagation.

We use an experimental system developed specifically to probe the 
initiation and propagation of an extended fracture. To attain an uninter-
rupted, extended fracture, we study a penny-shaped crack in a cylindri-
cal geometry. To precisely control the loading conditions, we induce 
the fracture through fluid injection and vary the fluid viscosity31–36. To 
probe the propagation of the full fracture front, we use a transparent 
material and image the crack motion with a high-speed camera. We use 
a 10-cm-diameter cylinder made of stereo-lithographically 3D-printed 
optically clear polymethylmethacrylate (PMMA). Fluid is injected 
through a hole in the centre of the sample, and a small notch initiates 
the crack (Fig. 1a). To control the loading, we vary the viscosity μ of the 
fluid that drives the fracture; to accomplish this, we use water-glycerol 
mixtures with different ratios. The fluid is injected with a high-pressure 
syringe pump operated at a constant flow rate of 0.3 ml min−1. The pres-
sure is measured with a gauge on the syringe pump that has a response 
time of 100 ms. The pressure increases linearly with time for 250 s, 
whereupon the crack is initiated at a pressure of roughly 40 MPa, lead-
ing to a sudden drop in pressure. The subsequent complete fracturing 
of the sample is so rapid that no additional fluid is injected by the pump. 
At these pressures, the fluid is compressed, and the propagation is 
driven exclusively by the expansion of the fluid and any small compli-
ance within the experimental system. We record 500 × 500 pixel images 
at 100,000 frames per second using a high-speed camera. The fluid is 
dyed with fluorescein, and the sample is illuminated with an intense 
blue light-emitting diode ring, which enhances the contrast between 
the fluid and the solid to improve the visibility of the fracture.

To explore fracture behaviour under different loading conditions, 
we vary the fluid viscosity. We enhance the visibility of the expanding 
fracture by subtracting the image just before the fracture is initiated 
from all later images. Thus, the fracture appears as a bright, circularly 
expanding ring in Fig. 1b,c, whereas the fluid appears as a darker inner 
circle in each image. We identify both the fluid front (blue) and fracture 
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Although the model provides excellent agreement with the data, 
it intrinsically assumes a circularly symmetric interface and, therefore, 
inherently ignores any possible distortion of the fracture front. As 
the fracture propagates through the stick–break instability, we can 
investigate many instances of the propagation of an extended fracture 
front from a stationary crack and can thereby determine exactly how 
fracture advance begins. We focus on the behaviour when the applied 
load is far from the fracture front, and thus, the lag is large. We, there-
fore, consider the data for μ = 400 cP. Careful inspection reveals that 
each advance of the fracture front is not uniform along its full extent. 
Instead, the initial nucleation of any break event is extremely rapid yet 
seems to be spatially localized, and thus, the fracture front must be 
locally distorted, as seen in Supplementary Video 1. To directly observe 
the advance, we examine the differential growth of the single stick–
break instability highlighted by yellow arrows in Fig. 1e. We subtract 
the image just before the initial rupture from each of the subsequent 
images. The forward advance of the fracture front does, indeed, begin 
at some localized region. It then rapidly spreads transversely along the 
full extent of the front, as shown by the sequence of images separated 
by 20 μs in Fig. 2a. The fracture propagates transversely fully around 
half the perimeter, corresponding to 9 cm, in roughly 100 μs. This 
represents an exceptionally fast velocity of 900 m s−1, comparable to 
the Rayleigh-wave speed, CR = 940 m s−1, as determined by acoustic 
methods (Supplementary Fig. 1).

To follow the time evolution of the profile of the crack front, we 
detect the edges of the bright region and measure δλ in each image as a 
function of the transverse distance along the circumference Rθ, where 

R is the radius of the fracture measured from the injection point and θ is 
the angle measured from the nucleation position. The first image of the 
fracture front exhibits a very strong distortion where the initial rupture 
occurs. The front is sharply curved with the edges nearly perpendicular 
to the transverse direction, as shown by the green curve in Fig. 2b (top). 
The shape of the distortion of the fracture front remains the same as it 
spreads transversely. The propagation of the flat region in the forward 
(radial) direction slows and stops after three frames (30 μs) whereas 
the perpendicular edges expand at a nearly uniform rate, as shown in 
Fig. 2b (top). To quantify the motion, we determine the velocity of the 
fracture front. Because of the limited time resolution, we can determine 
only a lower bound for the velocity of the forward motion. However, 
at any point, there is a rapid initial forward velocity followed by much 
slower motion, as shown, for example, at the nucleation location, 
Rθ = 0 mm (red), in Fig. 2c. The transverse velocity can be measured 
more precisely. We plot the time the fracture front reaches 1.5 mm, 
about 75% of the total jump amplitude, as a function of radial distance 
(solid blue points in Fig. 2c). The transverse velocity is comparable to 
that of the Rayleigh wave indicated by the black dashed line in Fig. 2c.  
The behaviour is fundamentally the same for each break event. The ini-
tial fracture advance is through nucleation at some localized position, 
followed by an ultra-fast transverse expansion around the circumfer-
ence to fully extend the fracture.

Similar behaviour is observed for all loading conditions. For all 
values of the lag, an analysis using differences between subsequent 
images clearly shows that fractures propagate through a stick–break 
motion, nucleated at a single point, and followed by rapid transverse 
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Fig. 1 | Experimental system and properties of extended fractures. a, Top, 
experimental set-up showing a penny-shaped growing fracture with the fluid 
(blue) lagging the fracture front (red). Bottom, cross section of the fracture 
and injected fluid. b,c, Images of the fracture 2 ms (b) and 4 ms (c) after crack 
initiation. The fracture front (red lines) leads the fluid front (blue lines) for both 
μ = 1 and 400 cP. d,e, Kymographs from the edge of the injector in the north-east 
direction showing the amplitudes of the fluid front (blue lines) and fracture front 
(red lines). The amplitude of the fracture follows stick–break motion and exhibits 
abrupt jumps followed by long times with no motion, for both μ = 1 Cp (d) and 
400 cP (e). f, Measured dependence of λ on μ compared to the model predictions. 

g, Measured values of δλ as a function of λ compared to the predictions of a 
model based on linear elastic fracture mechanics. The value of the viscosity for 
each data point is denoted by its colour and is given in the legend. h, Variation 
of stress intensity factor with lag, normalized by the radius of the fracture. The 
fracture is initiated at a value of K slightly larger than the value when it arrests, 
allowing it to propagate a small distance much faster than the fluid, thereby 
increasing the lag by a small amount, as shown by the two circles with the arrows. 
When the lag is smaller, the same δK/K0 leads to a smaller increase in the lag, as 
shown by the two solid points and the arrows on the left.
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propagation (Supplementary Video 3). The transverse velocity is very 
fast, comparable to the Rayleigh-wave speed of the material provided 
that δλ > 2 mm. Interestingly, however, there is a very pronounced 
decrease in transverse velocity VT when δλ approaches zero, as shown 
in Fig. 3.

To gain insight into the behaviour of the transverse propagation, 
we simulate the development of a spatially extended planar fracture in 
a 3D linear elastic medium using a spectral boundary integral method 
(Methods)40. The extended fracture front is initially straight instead of 
circular. We use values for the material density, elastic moduli and Kc 
that mimic those in the experimental system. We consider the propa-
gation of a brittle crack. The crack-tip singularity is regularized by 
introducing a cohesive zone of size XC, which is much smaller than all 
other length scales. The simulation follows the same strategy as the 
one used to account for the experimental data in Fig. 1. We ignore the 
fluid itself and assume that the applied pressure is constant beyond 
a fixed distance from the crack tip, thereby introducing the lag. The 
initial condition consists of a crack with applied pressure such that it 
is in equilibrium at half-length R with toughness Kc + δKc. However, the 
toughness ahead of the crack front is reduced to Kc, so that the crack 
is initially in an unstable equilibrium. We nucleate the instability by 
reducing the toughness at a localized region along the crack front to Kc.

In our simulation, we use λ = 8 mm, which yields a jump size of 
δλ = 2 mm, consistent with the experiment as shown in Fig. 1g. Once 
initiated, the fracture propagates dynamically in the transverse direc-
tion (Supplementary Video 4 and Supplementary Fig. 5), and the 
profile of the simulated fracture front matches that of the experiment, 
as shown by the fracture-front profiles in Fig. 2b (bottom). The veloc-
ity in the forward direction reproduces the experimental observa-
tions, with an initial rapid rise followed by a deceleration, as shown 
by the solid lines for z = 5 mm (red) in Fig. 2c. Moreover, the simulated 
transverse velocity is asymptotically very close to the Rayleigh-wave 
speed, as shown by the blue solid line in Fig. 2c. Consistent with the 
experiment, in the simulation the jump size increases with the lag. 
For all values δλ ≥ 2 mm, the transverse velocity is nearly that of the 
Rayleigh-wave speed in agreement with experiment. By contrast, 
for smaller δλ, the simulation does not capture the decrease in the 
transverse velocity observed in the experiment, as shown in Fig. 3. 
Because the simulation is based on the brittle fracture framework, 
this discrepancy suggests that there is a deficiency in this framework 
for short jump sizes. In the simulation, the deficiency with the brittle 
fracture framework occurs when the jump size becomes comparable 
to the cohesive zone. Although we have not directly measured the 
length of the cohesive zone in our samples, it is not unreasonable to 
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Fig. 2 | Details of propagation of extended fracture for a single nucleation 
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of the fracture following the initial radial expansion shown in the first image. 
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radial direction followed by rapid expansion transversely for the experiments 
(top) and the simulations (bottom). c, Radial velocity of the fracture front at 
the point of nucleation (Rθ = 0 mm and x = 5 mm). There is a rapid initial jump 
followed by a much slower decay, for both the experiment and simulations  
(red line). The transverse velocity of the fracture front, measured at δλ = 1.5 mm, 
is high as the fracture propagates transversely along the full perimeter, for both 
experiments and simulations (blue lines). The transverse velocity is remarkably 
close to the Rayleigh-wave velocity Cr shown by the dashed line.
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expect it to be comparable to the very short δλ measured for water, 
which is less than 200 μm and is limited by the resolution of our meas-
urement. Alternatively, the discrepancy may arise because the flow 
of the water over the short length of the jump is sufficiently fast that 
fluid flow should be explicitly included.

By examining differential images in the videos, we determine the 
effect of the loading conditions on the length scale of the jumps. For 
large lags, the nucleation events are well separated, and the fracture 
propagates around the full circumference well before the next nuclea-
tion event occurs. By contrast, for smaller lags, the time between the 
nucleation events decreases markedly and the fracture cannot propa-
gate fully around the circumference before subsequent nucleation 
events occur. A typical example is shown for μ = 100 cP. One nuclea-
tion event occurs and propagates about a third of the circumference, 
whereupon a second nucleation event occurs. Thereafter, the two 
counter-propagating transverse fractures merge and stop when they 
meet, as shown in Fig. 4a. This behaviour becomes even more pro-
nounced as λ decreases further. For μ = 1 cP, additional nucleation 
events occur well before the transverse propagation of the fracture 
extends to the full circumference. For example, an instance when two 
counter-propagating transverse fractures from earlier nucleation 
events (1 and 2) merge and stop occurs at the same time as two new 
nucleation events (3 and 4) occur as shown in Fig. 4b. For these new 
events, the two closest counter-propagating transverse fracture fronts 
meet and merge, leaving only two counter-propagating transverse 
fracture fronts remaining, as shown in Fig. 4b and in Supplementary 
Video 3.

To account for these observations of the λ dependence of the 
intervals between nucleation events, we compare the average stick 
time τN = δλ/v to the propagation time required for a transverse frac-
ture to travel around half the circumference τT = πR/VT. The average 
forward velocity of the fracture v is determined by the loading rate and 
is set by the average velocity of the fluid expansion, which is roughly 
independent of viscosity. Therefore, τN decreases with λ as δλ decreases. 
By contrast, τT increases with viscosity since VT decreases with λ. This 
variation accounts for the observed behaviour of several transverse 
fractures propagating simultaneously (Supplementary Video 2). In 
fact, when τT is much larger than τN, several fracture events occur nearly 
simultaneously and we observe cases in which the transverse propaga-
tion from each break is only in a single direction. Thus, there is a con-
tinuous, simultaneous propagation of several transverse fractures in 
the same direction, as shown in Fig. 4c.

The circular geometry studied in this Article is key for the inves-
tigation of extended fractures because of the lack of edges. Thus, no 
matter where the initial nucleation occurs, it is in the middle of the 
fracture front. Moreover, the control afforded by fluid-driven fracture 
enables us to precisely vary the loading conditions and, hence, the 
distance between the applied stress and the fracture front. Further-
more, a fluid-induced fracture is intrinsically unstable and propa-
gates through a stick–break instability. We exploit these features 

to demonstrate that crack motion starts with a localized nucleation 
event followed by a very rapid transverse expansion. Because the 
fracture is always extended, this behaviour should be ubiquitous 
and describe the propagation of any fracture. Our results provide a 
basic understanding of the fundamental nature of fracture propaga-
tion in realistic, 3D geometries. Observations of extended fractures 
for which evidence of irregular crack propagation was inferred from 
lower-resolution imaging and postmortem studies of the fracture 
surface5 likely point to a similar mechanism. Our results should also 
be applicable to crystalline materials, which could be used experimen-
tally to validate our simulations and theoretical predictions that sug-
gest that the process of local nucleation and transverse propagation is 
an energetically efficient route for crack advance in lattice models14–30. 
The same behaviour should occur for fractures at all length scales, 
from the cracking of windshields and cell-phone screens to in-ground 
resource recovery, CO2 sequestration and geothermal energy. These 
observations may also provide insights into the behaviour of other 
classes of fracture propagation, such as earthquakes, as, for example, 
microearthquakes suggest that localized propagation is distributed 
over large portions of the fracture front41.
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summaries, source data, extended data, supplementary infor-
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simultaneous propagation of several transverse fractures in the same direction.
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Methods
Sample preparation and static mechanical properties
Each sample was 3D-printed stereo-lithographically from an optically 
clear PMMA based resin (clear resin, Formlabs). A sample was cylindri-
cal with a diameter of 10 cm and height of 3.2 cm. A hollow fluid injector 
was in the centre of the 3D-printed design. The injector consisted of a 
cylinder of 3.8 mm in diameter and height of 16 mm and was connected 
to a conic-shaped fracture initiation site of diameter 15 mm at its bot-
tom and of height 3 mm (Fig. 1a). The density of a printed sample was 
ρ = 1,200 kg m−3. The Young’s modulus of the material, E = 1.6 GPa, was 
measured using ASTM 399 testing. The fracture toughness, 
Kc = 0.75MPa√m, was measured with ASTM 638 testing. Both tests used 
a sample of thickness 24 mm and various loading rates ranging from 
0.1 to 10 mm min−1.

Measurements of dynamic elastic moduli
We carried out a drop ball test on a 3D-printed cube of dimensions 
140 × 140 × 50 mm. Four acoustic emission sensors (KRNBB-PC) were 
placed in line along the centre of the surface of the sample and sep-
arated from each other by 15 mm. A 1-mm-diameter metal ball was 
thrown from a height of 20 cm, 15 mm away from the first sensor, as 
shown in Supplementary Fig. 1a,b. Due to this impact, an acoustic wave 
consisting of a pressure wave and a surface acoustic wave (or Rayleigh 
wave) was emitted and recorded successively by the four sensors. By 
looking closely at the signals, we could differentiate the two compo-
nents of the acoustic wave, as shown in Supplementary Fig. 1c. From 
the consistent delay of 6.5 μs for the signal measured by each sensor, 
we estimated that the p-wave velocity was close to CP = 2,300 m s−1, as 
shown in Supplementary Fig. 1d (top). The Rayleigh wave resulting 
from the impact was observed to have a consistent delay of 16 μs, as 
shown in Supplementary Fig. 1d (bottom). Thus, we estimated the 
Rayleigh-wave velocity CR = 940 m s−1. The inferred shear-wave velocity 
was CS = 1,000 m s−1. The dimensions of the sample were chosen care-
fully to avoid any superposition of the first reverberated p wave on one 
of the faces of the sample with the surface acoustic wave, which was 
observed at later time. From the measurements of the wave speeds, 
we obtained the high-frequency Poisson ratio ν = 0.38 and Young’s 
modulus E = 3.3 GPa.

Relative contributions to injection compliance
We measured the total compliance (U) of the injection system, which 
relates the increments of injected fluid volume (Vf) to those of pressure 
(pf) before the fracture initiated:

dVf
dt

= Udpf
dt

. (1)

The total compliance is the sum of the compliance of the apparatus 
(Ua) plus the compliance of the fluid it contains (Uf): U = Ua + Uf. We 
measured U = 2.3 × 10−2 ml MPa−1, and we calculated the compliance 
of the fluid from Uf = βVf, where β = 4.6 × 10−10 Pa−1  is the isothermal 
compressibility of water at 25 °C and where Vf = 35 ml, including 20 ml 
in the pump cylinder and 15 ml in the tubing and connections. There-
fore, we estimated that Uf is 70% of U, so that water compressibility was 
the major source of injection compliance. We consider the compress-
ibility only of the water because the fluid entering the fracture (pure 
water or water-glycerol mixtures) was added only in the injector within 
the 3D-printed sample, which is only about 2 ml and negligible com-
pared to Vf. Thus, we could neglect the slight difference in the compress-
ibilities of the water and the glycerol mixtures.

The compliance U provides a characteristic length scale for a 
fracture driven by fluid expansion (UE′)1/3, where E′ is the normalized 
Young’s modulus E′ = E/(1 − ν2) and ν is Poisson’s ratio35,42. This length 
was 4.7 cm and was comparable to the sample radius of 5 cm, suggesting 
that the source of fluid volume driving the fracture resulted from 
system compliance and not from the constant rate of injection. This is 

consistent with the observation of a negligible volume introduced by 
the pump during the very short time of the complete fracture 
propagation.

Modelling the jump amplitude
To gain insight into the stick–break instability, we modelled the behav-
iour of the fracture using linear elastic fracture mechanics. To make 
the model more tractable, we ignored the angular dependence and 
considered a circularly symmetric, penny-shaped fracture such that 
the difference between the position of the fracture front R, as measured 
from the injection point, and the fluid front Rf was the lag λ, as shown 
in Fig. 1a (bottom). We neglected the very small pressure of the vapour 
in the lag region and approximated the fluid pressure with a linear 
profile P(r) = P0(1 − r/Rf), where P0 is the applied pressure at the inlet. 
The stress intensity factor K is given by31

K = 2
√πR

∫
Rf

0

P(r)
√R2 − r2

rdr, (2)

where the integration is limited to the fluid region. The stress intensity 
factor decreased with increasing lag, as seen in Fig. 1h, which is a plot of 
K/K0 as a function of λ/Rf, where K0 is the value of K at λ = 0.

We assumed that the fluid front is stationary and that the pressure 
profile did not change during the very short time of crack propagation. 
To account for the stick–break nature of the propagation, we assumed 
that the nucleation of the crack occurred at a somewhat higher value 
of K than did the arrest. Therefore, we took Kc to be defined by the 
value of λ at which the crack arrested and assumed that crack nuclea-
tion occurred at a slightly larger value Kc + δKc, which corresponds to 
a smaller value λ − δλ. This assumes that the crack stopped when the 
energy released per unit propagation of a crack became smaller than 
the fracture energy. The jump amplitude is calculated by

δλ = −(dK(λ)
dλ )

−1
K(λ)δKc

Kc
,

with δKc/Kc ≈ 0.12. The assumption of a linear gradient of pressure may 
be modified at low viscosities43. However, the slight modification of 
the predicted λ dependence of δλ is still in good accord with the experi-
mental data, as shown in Supplementary Fig. 2.

Modelling the average lag
The crack opening in the vicinity of the tip w(r) is dominated by a uni-
versal square-root form:

w(r) = √
32
π

K
E′
√R − r. (3)

To account for the viscosity dependence of λ, we incorporated 
fluid flow in our description of the fracture. We described the fluid flow 
with the Poiseuille equation:

q = − w3

12μ
∂P
∂r
. (4)

As q = wv at the fluid front, which moved at a velocity, v, we 
obtained w from equation (3) and ∂P/∂r from equation (4), enabling 
us to determine the μ dependence of the lag:

λ
R = 1 − Rf

R = 12√π
16

μvE′2

K3
c/√R

Rf
R ∫

Rf/R

0

(1 − x)
√1 − x2

xdx. (5)

Interestingly, we found that the average velocity of the fluid front 
depended only weakly on μ. Therefore, we used v = 3 m s−1. Because 
the fracture propagated at high velocities, we accounted for the fre-
quency dependence of the elastic modulus and used the acoustic 
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measurements to determine E′ = 3.8 GPa. We were unable to experi-
mentally determine the corresponding value of Kc for these frequen-
cies. We, therefore, used Kc = 1 MPa m1/2. Both the value of E' measured 
from the acoustics and the value of Kc used in solving equation (5) are 
larger than the values measured experimentally with a tensile test, 
which was a quasi-static measurement (Supplementary Fig. 3). This 
frequency-dependent increase in each value was expected44.

Spectral boundary integral simulations
The elastic moduli and critical stress intensity factor corresponded to 
those in the experimental system. We neglected viscous dissipation 
and considered the propagation of a planar crack within an unbounded 
linear elastic medium (Fig. 1a). We solved the 3D electrodynamic equa-
tions using a spectral boundary integral method40 implemented in 
the open-source software Uguca45. This spectral formulation implies 
that crack propagation occurs along the x–z plane. There were peri-
odic boundary conditions along x and z, whereas the domain was 
unbounded along y. Hence, we considered short times, before any 
interaction of the crack. Waves were radiated with the x boundaries.

The crack was modelled using a cohesive law46,47 that relates the 
material tensile strength τs to the crack opening displacement uy. For 
simplicity, we assumed a linear law:

τs (uy) =
⎧
⎨
⎩

σY (1 −
uy

δc
) , for

uy

δc
< 1,

0, for
uy

δc
≥ 1,

(6)

which is enforced over the entire x–z plane, where crack propagation 
is admissible. The yield strength σY and critical opening δc are related 
to the fracture toughness Kc by the following relation:

K2
c
1 − ν2
E = σYδc

2 . (7)

The cohesive law regularizes the stress singularity at the crack tip 
over the cohesive zone (Fig. 1b), which has size Xc and functional shape 
̂τ(s) ≈ s (ref. 6):

Xc = π 1
2

K2
c

σY2
(∫

1

0

̂τ
(s)√sds)

−2

≈ π 9
32

K2
c

σY2
. (8)

We selected σY and δc so that Xc ≈ 200 μm, which is lower than all 
the other relevant length scales.

The initial condition consisted of a straight crack in equilibrium, 
with applied constant pressure over a region |x| < Rf. We modelled 
the excess critical stress intensity factor at initiation by setting the 
yield strength beyond the crack front at a lower level than along the 
front (Supplementary Fig. 4b). Hence, the initial stationary crack 
of half-length R = 10 mm was in an unstable equilibrium. We nucle-
ated a localized rupture by decreasing the yield strength smoothly 
in space and time over a region of size rnuc along the crack front at 
x = R. The front at x = −R was set to remain stationary to avoid any 
spurious interactions (Supplementary Fig. 4a). Once rnuc reached a 
critical size, the crack propagated towards its stable configuration 
at x = R + δλ (Supplementary Video 4 and Supplementary Fig. 4b). 
The mesh size was such that Xc was sufficiently discretized. A mesh 
convergence analysis and sensitivity analysis on boundary condi-
tions were carried out.

Data availability
The datasets generated or analysed during the current study are avail-
able from the corresponding author upon reasonable request.

Code availability
The code used to generate the simulation data presented in the manu-
script and supplementary materials is available at https://github.com/
gabrielealbertini/extended_fracture_uguca_sim.
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