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Introduction

This document contains supporting information on the problem formulation and numer-

ical implementation relevant to the numerical results on fluid-induced seismicity presented

in the main article entitled “Nucleation and arrest of fluid-induced aseismic slip”. In Text

S1, we present the semi-analytical solutions for fluid pressure distribution and evolution

during and after injection. Text S2 describes the derivation and discretization of the gov-

erning equations for fault slip and opening using the Displacement Discontinuity Method
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(derived from the Boundary Element Method). Text S3 presents the elasto-plastic proce-

dure adopted to account for frictional constraints on the fault plane. Text S4 describes

the residuals considered in the numerical simulator and the general solution procedure.

Text S5 presents a validation of the numerical implementation by comparing the results

with a semi-analytical solution. Text S6 introduces Figure S2 showing how the peak slip

rate evolves over time after injection shut-in. Text S7 justifies the use of oedometric con-

ditions for the elastic opening of the fault layer in response to fluid pressure change using

a procedure similar to (Marck et al., 2015). This paragraph also introduces Figures S4

and S5.

Text S1: fluid pressure during and after injection

Fluid pressure is governed by diffusion along the planar fault interface. For a two-

dimensional model, fluid pressure is then governed by the following one-dimensional equa-

tion:

∂p

∂t
− α∂

2p

∂x2
= 0, (1)

where α is the hydraulic diffusivity and x is the direction of the fault interface. Injection

is modeled using a constant pressure fluid source at the origin (x = 0). With the following

initial and boundary conditions:

p (x, t = 0) = p0, p (x = 0, t > 0) = p0 + ∆p, (2)

the known solution for the fluid pressure is:
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p (x, t) = p0 + ∆p erfc

(
|x|√
α′t

)
, (3)

where α′ = 4α is the nominal hydraulic diffusivity. After injection shut-in (for t > tp),

the fluid pressure is free to diffuse and is subject to the following initial conditions (at the

end of the pressurization phase):

p (x, t = tp) = p0 + ∆p erfc

(
|x|√
α′tp

)
. (4)

The fluid pressure after injection shut-in can be estimated as the convolution with

respect to the spatial variable x of the pressure distribution at t = tp (Equation 4) and

the Green’s function (see similar approach by Ciardo and Rinaldi (2022)):

p (x, t > tp) = p0 +
∆p√

πα′ (t− tp)

∫ +∞

−∞
erfc

(
|s|√
α′tp

)
exp

(
− |x− s|

2

α′ (t− tp)

)
ds. (5)

The convolution in Equation 5 is evaluated numerically using adaptive Gauss-Kronrod

quadrature.

Text S2: displacement discontinuity method

For a one-dimensional fault interface, the quasi-static force balance gives the distribution

of the normal σ and shear stresses τ respectively as functions of the slip and opening

distributions (e.g. Rice et al., 1968):

σ (x, t) = σ0 +
µ′

π

∫ +a(t)

−a(t)

∂φ

∂s

1

s− x
ds, (6a)

τ (x, t) = τ0 +
µ′

π

∫ +a(t)

−a(t)

∂δ

∂s

1

s− x
ds, (6b)
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where φ and δ are the fault opening and slip, µ′ the effective shear modulus and a the

extent of the rupture zone. As we consider a single fault in this study, and because the slip

and opening are by definition zero outside the rupture zone, the integrals in equations 6a

and 6b can be evaluated on an arbitrary domain size larger than the rupture size (L > a).

We discretize the fault segment into n elements and make use of piecewise constant shape

functions (e.g. Uenishi & Rice, 2003) to approximate the opening and slip distributions:

φ (x, t) =
n∑
i=1

φi (t)ϕi (x) , (7a)

δ (x, t) =
n∑
i=1

δi (t)ϕi (x) . (7b)

where φi and δi are the discretized values of opening and slip and ϕi the shape function

in the ith element. For one-dimensional elements, piecewise constant shape functions are

expressed as:

ϕi (x) = H (x− xi)−H (x− xi+1) , (8)

where H is the Heaviside step function and xi and xi+1 the limit coordinates of the ith

element. Replacing the integral over the entire domain into a sum of integrals over each

element, leads to the discretized version of Equations 6a and 6b:

σi = σ0 +
n∑
j=1

Eijφj, (9a)

τi = τ0 +
n∑
j=1

Eijδj. (9b)
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Eij is the elastic collocation matrix expressed as:

Eij =
2µ′aj

π
(
(x̄i − x̄j)2 − a2

j

) , (10)

where aj =
∆xj

2
is the jth element half-length and x̄i the coordinate of the ith element

centroid. In our implementation (see Text S4), we consider Equations 9 in an incremental

form (over a fixed time step) to compute the increments of normal and shear stresses (∆σ

and ∆τ) as functions of the increments of opening and slip (∆φ and ∆δ) respectively:

∆σi =
n∑
j=1

Eij∆φj, (11a)

∆τi =
n∑
j=1

Eij∆δj. (11b)

Text S3: frictional constraints and elasto-plastic approach

As our model aims at understanding the evolution and distribution of stable aseismic

slip, we consider a Mohr-Coulomb frictional strength with constant friction coefficient f

formulated here as a plastic yield function noted F :

F = τ − f (σ − p) 6 0. (12)

To account for the constraints imposed by the frictional strength of the fault interface

described by Equation 12, we rely on an elasto-plastic splitting for the stress update. We

consider the fault surface to be the boundaries of a layer of thickness h. Fault slip and

opening are understood to be the difference in displacement between the top and bottom

of this layer (see Figure S1). The fault layer can undergo elastic and plastic deformation
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in response to a given shear and normal stress. The deformation within the layer is

described by homogeneous normal and shear strain. Assuming an additive splitting of the

shear strain into elastic and plastic parts, the local stress increments at a point along the

fault surface can be given as:

∆σ − αB∆p = κ
∆φ

h
, (13a)

∆τ = µ

(
∆δ

h
−∆γp

)
, (13b)

where κ is the normal modulus, αB is the Biot’s poroelastic coefficient, ∆γ = ∆δ
h

the total

shear strain increment, and ∆γp the plastic shear strain increment. Equations 13 give

a local stress update based on the relative displacement across the layer. Equations 13

describe oedometric deformation conditions which are valid when the diffusion length

scale is large compared to the fault thickness (
√
α′t � h). We discuss the validity of

this approximation and the expression of the normal modulus κ in Text S7. The plastic

strain is updated following a non-associative (zero dilation) flow rule resulting in plastic

deformation only in the shear direction.

The plastic update is done in three steps: (i) first the trial shear stress is computed for

a given time step, (ii) the trial yield condition is computed based on the trial shear stress

and normal effective pressure, and (iii) the trial shear stress is corrected if yielding occurs.

For the kth time step (quantities with subscript (k)), the trial shear stress τ tr is given as:

τ tr(k) = τ(k−1) + µ∆γ(k), (14)
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where ∆γ(k) =
∆δ(k)
h

is the increment of total shear strain for this time step. With this

definition, we can also express the plastic correction from the trial state to obtain the

final shear stress when plastic deformation occurs:

τ(k) = τ tr(k) − µ∆γp(k). (15)

The increment of plastic strain is obtained by combining Equations 15 and 12 together

as:

∆γp(k) =

{
0, if τ tr(k) − fσ′(k) < 0,
τ tr
(k)
−fσ′

(k)

µ
, otherwise.

(16)

Text S4: update procedure

For each time step, we solve for the increments of slip ∆δ and of opening ∆φ given the

change in fluid pressure along each element, ∆p. The equations governing the increments

follow from the combination of Equations 11 and 13:

n∑
j=1

Eij∆φj −
κ

h
∆φi − αB∆pi = 0,

n∑
j=1

Eij∆δj −
µ

h
(∆δi − h∆γpi ) = 0, (17a)

where the subscript i indicates the position of the ith element in the mesh. We de-

note the left-hand side of these equations the normal and shear residuals, Rφ,i (∆φi) and

Rδ,i (∆φi,∆δi) respectively. The opening φ is governed by elastic deformation within

the fault induced by changes in fluid pressure and the slip δ is governed by frictional
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constraints. Where plastic deformation occurs, the shear residuals depend both on the

increments of opening and of slip as Equation 16 can be alternatively expressed when

plastic deformation occurs as:

∆γp(k) =
τ(k−1) − f

(
σ − p(k−1)

)
µ

+
∆δ(k)

h
− f

αB

κ

µ

∆φ(k)

h
. (18)

Equations 17 are solved for using Newton-Raphson iterations and a BiCGstab(l) iter-

ative linear solver. The normal effective stress and shear stress are also updated at the

end of each time step. At the beginning of each time step, the increments of opening

and slip are initialized to zero, and we compute the changes in fluid pressure using the

expressions from Text S1. During the first evaluation of the residuals, the shear residuals

are equal to zero as the increment of slip is zero and the normal residuals nonzero due

to the changes in fluid pressure. In a second iteration, the changes in opening induced

by the fluid pressure changes will trigger changes in normal effective stress and therefore

plastic deformation where yielding occurs. This, in turn, induces slip on the fault plane.

The Newton-Raphson iterations are stopped when the norm of the residuals reaches or is

smaller than a given absolute tolerance (1.0× 10−12 by default). After a successful solve,

the cumulative values of opening, slip, normal stress, and shear stress are updated based

on the computed increments.

Text S5: verification of the implementation

The implementation of the displacement discontinuity method together with the elasto-

plastic correction for frictional constraints have been verified against the analytical solu-
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tion provided by Viesca (2021) for aseismic slip in response to a constant pressure fluid

source.

Figure S2 shows the comparison between the analytical solution of Viesca (2021) and the

numerical solution obtained with 10 000 elements. These results were obtained considering

a fault stress parameter T =
(

1− τ0
fσ′

0

)
σ′
0

∆p
= 0.5. The full list of parameter values can be

found in Table S1.

Text S6: peak slip rate evolution after injection shut-in

The maximum slip rate after injection shut-in decays over time until becoming null at

the arrest time. We demonstrated in the accompanied manuscript that the final arrest

time is proportional to the pressurization duration. Here we also show that the peak slip

rate scales with the inverse of the square root of the pressurization duration. Furthermore,

the evolution of the scaled slip rate is self-similar on time as depicted in Figure S3 as results

for three different pressurization durations collapse into one line. However, the slip rate

is not self-similar over space in general after injection shut-in.

Text S7: conditions of oedometric conditions for elastic opening in response

to a change in fluid pressure

The constitutive relation for the deformation of a linear poroelastic medium is given in

an incremental form by (Rice & Cleary, 1976; Cheng & Detournay, 1988):

∆σij = 2µ∆εij + λ∆εkkδij − αB∆pδij, (19)
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where εij is the strain tensor, λ and µ the first and second (shear) Lamé moduli and αB

the Biot’s poroelastic coefficient. The change in normal stress ∆σ = −ni∆σijnj can be

expressed as a function of the normal strain ∆ε = −ni∆εijnj as:

∆σ − αB∆p = 2µ∆ε− λ∆εkk, (20)

with n being the normal vector to the fault plane. The increment in volumetric strain

can be decomposed into a normal and tangential parts, leading to:

∆σ − αB∆p = (λ+ 2µ) ∆ε− λ∆εxx, (21)

for a horizontal fault plane in a two-dimensional setting with x being the horizontal co-

ordinate, as described in our model. Marck et al. (2015) showed that, for a vertical line

source injecting fluid at constant injection rate in a finite thickness fault surrounded by

impermeable and elastic semi-infinite domains for axisymmetric geometries, the deforma-

tion rate of vertical displacement becomes oedometric (uniaxial) when the diffusion radius

is large compared to the fault layer thickness. In the following, we demonstrate that this

is also true in two dimensions for a line source injecting fluid at constant pressure as

considered in this study and that, under such conditions, the first term of the left-end

side (∆σ) and the second term on the right-end side (−λ∆εxx) of Equation 21 can be

neglected. To that end, we use a similar procedure as the one introduced from Marck et

al. (2015).

Figure S4 shows the geometry of the model consisting in a line source injecting fluid

within a finite thickness poroelastic layer at constant pressure. While the pressure within
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the poroelastic layer is given by Equation 1, it can be extended to the impermeable

domains as:

p (x, z, t) = px (x, t)L (z) , (22)

with px being the solution given by Equation 1 (independent of z) and L (z) =[
H
(
z + h

2

)
−H

(
z − h

2

)]
with H being the heaviside step function. The displacement

vector u within the poroelastic layer is governed by the following equation, assuming an

irrotational displacement field (Marck et al., 2015):

∇2u =
η

µ
∇p, (23)

with η = αB(1−2ν)
2(1−ν)

being the poroelastic stress coefficient with 0 6 η 6 1
2
.

Introducing the following scaling and dimensionless quantities:

ξ =
x

h
, ζ =

z

h
, τ =

α′

t2
, P =

p− p0

∆p
, U =

u

βh
, (24)

where α′ = 4α and β = η∆p
µ

, Equations 23 and 22 can be rewritten as:

∂Uξ
∂ξ2

+
∂Uξ
∂ζ2

=
∂Pξ
∂ξ

L (ζ) , (25a)

∂Uζ
∂ξ2

+
∂Uζ
∂ζ2

= Pξ
dL

dζ
(ζ) , (25b)

Pξ (ξ, τ) = erfc

(
|ξ|√
τ

)
, (25c)

with L (ζ) = H
(
ζ + 1

2

)
− H

(
ζ − 1

2

)
and dL

dζ
(ζ) = δD

(
ζ + 1

2

)
− δD

(
ζ − 1

2

)
, δD being the

Dirac delta function. The solutions for the horizontal and vertical displacements (Uξ and

Uζ respectively) can be found using the sine and cosine Fourier transforms given by:
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Fsin [f (t)] (ω) =

√
2

π

∫ +∞

0

f (t) sin (ωt) dt, (26a)

Fcos [f (t)] (ω) =

√
2

π

∫ +∞

0

f (t) cos (ωt) dt, (26b)

together with their inverse transforms:

F−1
sin [F (t)] (ω) =

√
2

π

∫ +∞

0

F (ω) sin (ωt) dω, (27a)

F−1
cos [F (t)] (ω) =

√
2

π

∫ +∞

0

F (ω) cos (ωt) dω. (27b)

Because of the symmetry of Uζ and anti-symmetry of Uξ with respect to the plane ξ = 0

and because of the symmetry of Uξ and the anti-symmetry of Uζ with respect to the plane

ζ = 0, we obtain the following solutions for the transformed fields U ξ and U ζ :

U ξ (χ, ω) = Fcos [Fsin [Uξ (ξ, ζ)] (χ, ζ)] (χ, ω) =
4

π3/2 (χ2 + ω2)
F

(
χ
√
τ

2

)
sin
(
ω
2

)
ω

, (28a)

U ζ (χ, ω) = Fsin [Fcos [Uζ (ξ, ζ)] (χ, ζ)] (χ, ω) =
4

π3/2 (χ2 + ω2)

F
(
χ
√
τ

2

)
χ

sin
(ω

2

)
, (28b)

with F (x) = e−x
2 ∫ +∞

0
et

2
dt is the Dawson function. The inversion of the Fourier transform

with respect to the variable ω can be performed directly to obtain the transforms (with

respect to ξ) of the horizontal displacement in the center of the layer Ũξ (χ, ζ = 0) and of

the vertical displacement at the top of the layer Ũζ
(
χ, ζ = 1

2

)
:

Ũξ (χ, ζ = 0) = Fsin [Uξ (ξ, ζ)] (χ, ζ) =
2
√

2

π

F
(
χ
√
τ

2

)
χ2

(
1− e−|

χ
2 |
)
, (29a)

Ũζ (χ, ζ = 1) = Fcos [Uζ (ξ, ζ)] (χ, ζ) =

√
2

π

F
(
χ
√
τ

2

)
χ2

(
1− e−|χ|

)
. (29b)
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The inverse transforms with respect to χ are evaluated numerically and the final solu-

tions for Uξ (ξ, ζ = 0) and Uζ
(
ξ, ζ = 1

2

)
are displayed in Figure S5 as functions of ξ and

evaluated at different times τ .

Figure S5 demonstrates that the vertical displacement solution (correspond to half of

opening) becomes similar to the fluid pressure solution at large time scales (τ > 104),

which corresponds to the diffusion length scale being larger than the fault thickness

(
√
α′t � h). This regime corresponds to oedometric or uniaxial normal deformation

of the poroelastic layer in response to a change in fluid pressure. At large times, the max-

imum value of the horizontal displacement reaches a plateau and spans larger distances

(note the log-scale of ξ in Figure S5-(a)), thus demonstrating the decay of the horizontal

strain εxx and of change in normal stress over time. In conclusion, when the diffusion

scale becomes large compare to the fault thickness, the first term of the left-end side

and the second term of the right-end side of Equation 21 can be neglected and simplifies

to a simple relation between change in fluid pressure and change in opening. With the

values of the physical properties considered in this study and summarized in Table S1,

oedometric conditions are reached after t >0.25 s of injection. After injection shut-in, the

fluid pressure gradient decreases significantly with time which ensures that oedometric

conditions are still valid. With this approximation, with Equation 21 simplifies to:

αB∆p = − (λ+ 2µ) ∆ε = −κ∆φ

h
, (30)

where ∆ε = ∆φ
h

and κ = λ+ 2µ = αBµ
η

.
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Figure S1. Physical representation of the elasto-plastic splitting of fault shear strain.

Slip is defined as the difference in horizontal displacement between the top and bottom

of a fault layer of thickness h. The homogeneous shear strain within the layer is split

additively into elastic and plastic parts. The magnitude of the elastic strain increment

(compared to the plastic one) has been greatly amplified for visual purpose.
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Figure S2. Slip profiles after 1, 5, and 10 mins of pressurization (left) and in its

dimensionless form (right) compared with the analytical solution from Viesca (2021).

Table S1. Parameter list for the simulations.

Parameter Value Unit

µ′ 20 GPa

ν 0.3 −

h 1 mm

σ0 50 MPa

p0 20 MPa

σ′0 30 MPa

f 0.5 −

∆p 12 MPa

α 0.01 m s−2

α′ 0.04 m s−2
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Figure S3. Evolution of the scaled peak slip rate after injection shut-in for three

different pressurization durations (collapsed in a single line).

Figure S4. A line source injecting fluid at constant pressure within a poroelastic fault

layer surrounded by elastic and impermeable semi-infinite domains.
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Figure S5. Solutions for (left) the horizontal displacement Uξ evaluated at ζ = 0 and

for (right) the vertical displacement Uζ evaluated at ζ = 1
2

at different times τ indicated

by the ticks of the color bar. The red dashed lines in (b) corresponds to the fluid pressure

solutions.
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