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[1] We model landslide initiation as slip surface growth driven by locally elevated
pore pressure, with particular reference to submarine slides. Assuming an elastic
medium and friction that weakens with slip, solutions exist in which the slip surface
may dynamically grow, without further pore pressure increases, at a rate of the order
of the sediment shear wave speed, a situation comparable to earthquake nucleation.
The size of the rupture at this transition point depends weakly on the imposed pore
pressure profile; however, the amount of slip at the transition depends strongly on
whether the pore pressure was broadly or sharply elevated. Sharper profiles may result
in pore pressures reaching the total slope-normal stress before dynamic rupture is
nucleated. While we do not account for modes of failure other than pure slip on a
failure surface, this may be an indication that additional modes involving liquefaction
or hydraulic cracking may be factors in the initiation of shallow slope failure. We
identify two length scales, one geometrical (h, depth below the free surface) and
one material (‘, determined by the frictional weakening rate) and a transition in
nucleation behavior between effectively “deep” and “shallow” limits dependent on their
ratio. Whether dynamic propagation of failure is indefinite or arresting depends largely on
whether the background shear stress is closer to nominal peak or residual frictional
strength. This is determined in part by background pore pressures, and to consider the
submarine case we simplify a common sedimentation/consolidation approach to reflect
interest in near-seafloor conditions.
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1. Introduction

1.1. Narrow Shear Zones in Landslides

[2] Landslides on land have often been observed to occur
as slip on a localized shear surface within the soil column.
The excavation of a failed clay slope in Selborne England,
where failure was artificially triggered by fluid injection
under experimental conditions, revealed a shear zone of mm
thickness within a cm-scale disturbed zone, creating an
arcuate shape that extended to a peak depth of 4 m below the
slope surface [Cooper et al., 1998]. Trenching following a
naturally (rainfall) induced slope failure revealed a disturbed
zone 2–20 mm thick occurring within decomposed granite
or within clay seams at comparable 2–5 m depths [Wen and
Aydin, 2003, 2004]. Similar to the Selborne failure, much of
the downslope displacement was inferred to have occurred

over shear zones <5 mm thick. Extensive observations of
landslides in southern Italy show extended periods of slow,
downslope motion (summarized by Picarelli et al. [2005]).
In addition to excavation of the slip surface, string inclin-
ometers were used to infer the displacement profile with
depth over time and shear was observed to occupy a thick-
ness at or below the resolution of the inclinometers (�50 cm)
[Picarelli et al., 1995; Pellegrino et al., 2004]. Slip surfaces
have also been detected in landslides at quite shallow depths.
In a landslide induced by artificial rainfall, the deflection of a
buried rod with strain gauges attached at 10-cm spacings
gave an indication that a shear zone developed below the
strain gauge resolution at depths ranging from 0.6–1.2 m
[Ochiai et al., 2004]. Discontinuities in displacement may
occur laterally as well, as observed by geodetic data from the
steadily creeping Slumgullion earthflow [Gomberg et al.,
1995].
[3] Despite much lower resolution of observation in the

submarine environment, there remains evidence to suggest
that downslope motion may occur as translation of material
overlying a shear zone that is thin relative to its depth. One
indication is simply the apparent slide morphology with an
example being the Gaviota slide off of the California coast.
The slide is a sheet-like failure bounded by upslope
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detachment and thrusting out of the apparent failure plane
occurring at the toe [Edwards et al., 1995]. Furthermore, an
open gap that is colinear with the landslide headscarp and
extends for several kilometers indicates that the adjacent
regions started to move downslope. At its largest, the gap is
2 m deep (compared to 6–8 m deep headscarp of the adjacent
failure) and 10 m wide, however high resolution (<1 m in
depth) seismic data show no apparent signs of disturbance
from the sediment deformation, consistent with initial slip on
a surface-parallel rupture [Blum et al., 2010]. Limits on
resolution are also partially compensated by the accessibility
through seismic data of failures preserved under deep sedi-
ment drapes. Offshore Angola, Gee et al. [2005] uncovered
blocks of sediment with seismically intact stratigraphy that
had been transported downslope several kilometers. The
dimensions of the blocks themselves reach several kilo-
meters in length and are approximately 100 m in depth. In
such instances there is often mentioned a “weak horizon”
implying that for the stratigraphy to remain as parallel
reflectors, downslope movement is translational with shear
localized to a basal layer.
[4] Such localized deformation may be expected for

materials that weaken with shear. The Selborne event
occurred in overconsolidated sediments (i.e., soils that have
previously supported greater overburden than at present), for
which such weakening is commonly known to exist and is
demonstrated, for example, in ring shear tests where local-
ized deformation is kinematically enforced [e.g., Bishop
et al., 1971] or in a triaxial cell in which weakening
occurs and localization is allowed to develop spontaneously.
In contrast to overconsolidated sediments, normally consol-
idated sediments (i.e., soils whose current overburden is the
largest ever supported) are thought to strengthen with shear.
However, while marine sediments are ideally considered as
normally consolidated, given typical sedimentation rates on
these slopes (�mm/yr or less) strength may develop due to
the long lifetime of interparticle contacts. Such behavior is
indicated by increased sample stiffness following long peri-
ods of fixed loads in consolidation tests [e.g., Karig and Ask,
2003]; by the development of increasingly peaked stress-
strain profiles under triaxial loading conditions for nor-
mally consolidated samples previously held under loads for
increasingly long times [e.g., Bjerrum and Lo, 1963]; as well
as evidence of strength regain in ring-shear tests after a
period of fixed displacement [e.g., Stark et al., 2005;
Carrubba and Del Fabbro, 2008; Stark and Hussain, 2010].
Such strength would be lost upon sufficient disruption of
contacts (i.e., the sediments are considered sensitive), and if
weakening is sufficiently strong, localized deformation may
be expected as for overconsolidated sediments.

1.2. Previous Fracture Modeling of Landslide
and Avalanche Initiation

[5] That weakening leads to localized deformation has
been a basis for theoretical work on slope stability, with the
shear zone approximated as a discontinuity in shear dis-
placement (slip, d) occurring across a surface. This repre-
sentation has the advantage that stress and displacements in
the slope may be readily calculated for a given distribution
of slip or stress on the discontinuity (as in the work ofMuller
and Martel [2000] and Martel [2004]). The work on

initiation has most commonly been done under the
assumption of linear elastic behavior of sediments in
response to slip parallel to a free surface at a depth h; and
that the shear strength on the slip surface weakens from a
peak tp to residual value tr over a characteristic amount of
slip dc. The purpose of this line of work has been to examine
conditions under which the slipping region will propagate
without external forcing (other than gravity).
[6] Much of the work in this field has assumed a priori

that the unstable rupture length will be much longer than the
depth. As a result of this assumption, the analyses can rea-
sonably neglect the deformation of the material underlying
the slip surface and also presume that the overlying material
undergoes a uniform compression or extension in response
to the slip. This may seem reasonable for submarine slope
failures where lengths often exceed a kilometer (we will later
find this assumption reasonable provided the slip surface is
relatively shallow). The first work in this vein was that of
Palmer and Rice [1973], who examined the scenario of a
slip-surface induced by the relief of stress from a cut in a
slope. McClung [1979] extended this analysis to the repre-
sentation of snow slab avalanches for the case when the
crack originates not from a cut in the slope, but within the
slope itself. Puzrin et al. [2004] performed a similar analysis
in the landslide context. An additional simplifying assump-
tion in much of the above work is that the weakening from
peak to residual occurs over a distance from the rupture tip
that is small compared to the depth. This so-called small-
scale-yielding assumption effectively presumes that the
strength of the slipping surface is at the residual level over
the length of the crack. While keeping the shallow depth
assumption, this assumption of small-scale-yielding was
relaxed in subsequent work [Cleary and Rice, 1974; Bažant
et al., 2003; Puzrin et al., 2004; Puzrin and Germanovich,
2005; McClung, 2009].
[7] In this shallow depth limit, the crack length at which

propagation occurs was found to scale with the lengthffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E∗hdc
tp � tr

s
ð1Þ

where E∗ = 2m/(1 � n) as the plane-strain modulus relating
stress changes to the extension and compression of the
overlying material (and m and n are the shear modulus and
Poisson ratio). Recent work has begun to consider finite
aspect ratios of crack length to depth. Studying the initiation
of snow-slab avalanches by the presence of uniformly weak
regions in the slipping zone, Bažant et al. [2003] assumed
both a finite slip-weakening region and burial depth, but
treated the underlying material as rigid, as is effectively
assumed in the shallow crack limit. In this work we will
explore the transition in behavior from that of a deeply
buried slip surface to that in a shallow limit for finite-size
weakening zones.
[8] The above work lies in parallel to that pursued in

mechanics of faulting, akin to a deeply buried limit [e.g.,
Ida, 1972]. Uenishi and Rice [2003] studied the quasi-static
growth of slip-weakening shear fracture in a linear elastic
medium by a locally increasing concentration of shear stress
on the fault. They observed that the fracture may reach a
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length at which its growth may continue without further
increases in shear stress, corresponding to the nucleation of a
dynamically propagating rupture. Furthermore, the key
result was their observation that, so long as shear strength
weakened linearly with slip (with slope (tp � tr)/dc), this
critical length was independent of the shape of the shear
stress concentration. At this nucleation limit, they showed
that the problem reduced to a eigenvalue problem the
smallest eigenvalue of which corresponds to the critical
length, approximately

0:579
m∗dc

tp � tr
ð2Þ

where m* is m/(1 � n) for mode II (slip in the direction of
rupture propagation, as assumed for work above) and m
for mode III (slip direction normal to rupture propagation).
In this work we will arrive at a comparable eigenvalue
problem to find the critical length under similar conditions
near a free surface. While nucleation under slip-weakening
friction continues to be of interest for some dynamic
rupture models [e.g., Bizzarri, 2010], experiments indicate
that friction on faults at the slow slip rates of the nucle-
ation stage may be better represented by a slip rate and
state dependence and consequently, there has been a shift
of focus to nucleation under this condition [Tse and Rice,
1986; Dieterich, 1992; Lapusta et al., 2000; Rubin and
Ampuero, 2005; Ampuero and Rubin, 2008; Rubin and
Ampuero, 2009].

1.3. Extension to Account for Local Sources
of Pore Pressure

[9] Within the landslide context, what has yet to be thor-
oughly studied in fracture growth is the role of the triggering
mechanism, the most commonly cited of which is an
increase in pore pressure. Rather than static increases in
levels of shear stress, the effective stress is reduced, lower-
ing the frictional contribution to shear strength. Of interest
here is the growth of a thin shear rupture in direct response
to local elevations of pore pressure, and how such local slip
may catastrophically grow to induce failure over a much
larger area. To isolate this response, we exclude potential for
weakening other than that induced by slip. This is in slight
contrast to work that seeks to couple this effect with the
potential formation and coalescence of weakened, but not
necessarily localized, regions of deformation to explain
apparent acceleration of deformation over days prior to
failure [Kilburn and Petley, 2003; Petley et al., 2005]. For
the infinite-slope-type problems considered for fracture
propagation, promising work in this direction explored both
shear-stress and pore pressure loading via a finite element
discretization of a shear-softening basal layer lying above a
rigid boundary layer and below an elastic-ideally plastic
material [Wiberg et al., 1990]. Of particular interest here is
how localized failure may propagate while pore pressure
remains at a level below confining stress levels, at which
point conditions may be met for liquefaction (a complete
loss of sediment shear strength, typically assumed here to be
frictionally determined) or the opening of a hydraulic frac-
ture. Our intention is not to exclude these possibilities,
which are beyond the scope of this paper, and indeed we will

find in the course of this study that such scenarios may not
be easily avoidable in certain environments.
[10] Observations have been made where pore pressures

remain below confining stresses and induced slip extends
over a region larger than that of local elevation. In the
Selborne experiment [Cooper et al., 1998], failure was
triggered within the overconsolidated clay by injecting
water over a period of several months. In the days pre-
ceding failure, the pore pressures averaged along the
eventual slip surface (as estimated from that of adjacent
piezometers) reached only approximately 15% of the ver-
tical overburden. That is well below probable lithostatic
stress levels and also well below what would generally be
expected for initiation of failure with the nominal slope
angle (�25�). However, when examining the distribution of
pore pressure along the slip surface, the authors find a
pronounced peak approximately midslope, during a period
of slow movement 12 days before catastrophic collapse.
The highest pore pressure in that local peak is approxi-
mately 48 kPa at 4.2 m below the surface. With an esti-
mated bulk soil unit weight a factor 1.7–2 times that of
water, this pore pressure seems sufficient to induce local-
ized slip while remaining below lithostatic stresses.
[11] A well-instrumented hillslope hollow in the Oregon

Coast Range underwent recorded changes in head with depth
during a rainstorm that precipitated a shallow (�0.5 m-deep)
landslide [Montgomery et al., 2009]. There, frictional
strength alone would be insufficient to maintain the soil on
such steep, �40� slopes and effective cohesive strength was
provided by a root network. The observations indicate that
fractured bedrock channelized the infiltrating flow toward the
hollow and caused localized seepage into the overlying soil
mantle, elevating pore pressures artesianally in one region to
failure and subsequently creating a larger scale failure. The
measured pore pressure, reported as its ratio to the overly-
ing soil thickness times the unit weight of water (the peak
value of which was 0.75 and coincided near a presumed
initiating region), did not reach the local slope-normal
stress (corresponding approximately to a ratio of 1 for the
nominal slope angle and typical bulk soil weight). Fur-
thermore, the pore pressures over what would eventually be
the failure surface were generally much less than the peak
value.
[12] With respect to the scenarios above, we will explore

whether a slipping region may be brought to the point of
unforced propagation before pore pressures reach the total
slope-normal stress. Perhaps not unexpectedly, in the model
examined below we will find that this is largely dependent
on the distribution of pressures, and particularly, how locally
peaked the distribution is. This line of work parallels that of
others, who, in the interest of studying artificially induced
dynamic rupture nucleation on faults with slip-weakening
[Garagash et al., 2009; D. I. Garagash and L. N. Germao-
vich, Nucleation and arrest of dynamic slip on a pressurized
fault, submitted to Journal of Geophysical Research, 2012]
or rate-and-state friction [McClure and Horne, 2010],
examined the effect of the along-fault diffusion of an in-
plane point source of constant pore pressure or fluid flux.
Indeed, in some of what will follow in section 4 (particularly,
ruptures far from a free surface) we take, as a starting point
for landslide representation, conditions that are comparable
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to those for buried earth faults. First, however, we will
consider in section 2 conditions by which ambient pore
pressures may be elevated near the point of failure, focus-
ing on the sedimentation of submarine slopes; and in
section 3 we will look for sources of perturbations to the
elevated pore pressure sufficient to initiate sliding.

2. Steady, Long-Time Sedimentation With
Consolidation and Effective-Stress-Dependent
Permeability

[13] Given typical sedimentation rates and sediment per-
meabilities, pore fluid pressures beyond hydrostatic are
expected and are often observed in the field [e.g., Flemings
et al., 2008]. These results generally show conditions of
high pore fluid pressures with depth, often with the vertical
profile near to and paralleling that of total sediment weight.
That effective stress may thereby become nearly indepen-
dent of depth is of interest for slope stability. Particularly,
while shear stress may increase with depth, frictional
strength may remain approximately constant. Therefore,
there is an interest in determining how shallowly this over-
pressure begins and what is its magnitude. In the following,
we perform a simplified consolidation-sedimentation analy-
sis to estimate near-seafloor conditions.
[14] We assume that the solid sediment particles and

pore fluid are much less compressible than the sediment
matrix under drained conditions, and that all compaction
occurs in the downward, slope-perpendicular direction, z.
Where q is the flux of pore fluid in the sediment and �
is the slope-perpendicular extensional strain, the conser-
vation of fluid mass reduces to a conservation of fluid
volume

∂q z; tð Þ
∂z

þ ∂� z; tð Þ
∂t

¼ 0 ð3Þ

Additionally, the compaction rate of the sediment matrix
is proportional to the rate of the effective stress s′(z, t)
(positive in compression):

∂� z; tð Þ
∂t

¼ �mv
∂ s z; tð Þ � u z; tð Þ½ �

∂t
ð4Þ

where s(z, t) is the total normal stress, u(z, t) = p(z, t)� ph(z)
is the pore pressure in excess of hydrostatic, and mv is the
compressibility of the sediment under 1D consolidation
conditions (strain only in z). Finally, the fluid flux q is
assumed to follow Darcy’s law q(z, t) = � (k/mf) ∂u(z, t)/∂z,
where k is the permeability of the sediment (initially
assumed constant here), and mf is the viscosity of the per-
meating fluid. Combining the above equations, we arrive to

cv
∂2u z; tð Þ

∂z2
¼ � ∂ s z; tð Þ � u z; tð Þ½ �

∂t
ð5Þ

where cv ≡ k/mf mv is the hydraulic diffusivity.
[15] Considering the moving-boundary problem of sea-

floor that aggrades uniformly with a sedimentation rate Rs,
we take time derivatives in a co-moving reference, where
the origin of the coordinate z rises with the seafloor.
Specifically, we replace ∂[s(z, t) � u(z, t)]/∂t above with
D[s(z, t) � p(z, t)]/Dt where D(⋅)/Dt = ∂(⋅)/∂t � Rs ∂(⋅)/∂z.

Looking for steady state solutions under constant sedimen-
tation Rs, such that local time derivatives vanish, the above
reduces to an ordinary differential equation

cv
d2u zð Þ
dz2

þ Rs
du zð Þ
dz

¼ Rsg ð6Þ

where Rs∂(s � ph)/∂z = Rsg and g = (gb � gw)cosq is the
slope-perpendicular component of the buoyant weight,
where gb = rbg is the specific weight of sediment with bulk
density rb under gravity g (typically, gb ≈ 1.5 � 2gw, with
gw the specific weight of water). The general solution sat-
isfying u = 0 at z = 0 is

u zð Þ ¼ gz� C
cvg
Rs

1� exp �Rsz=cvð Þ½ � ð7Þ

where 0 ≤ C ≤ 1 is a constant chosen to satisfy an imposed
condition g ≥ du(0)/dz ≥ 0. For a hydrostatic pore pressure
gradient as z approaches the seafloor, C = 1.
[16] The above may be considered as a long-time solution

of the steady sedimentation problem treated by Gibson
[1958] (i.e., the base of the sedimentary basin is considered
much farther than the depths of interest). The above result
would suggest that the effective stress s′(z) = gz � u(z)
becomes constant at a depth of the order cv/Rs, beyond which
the pore pressure follows lithostatic stress. However, for
typical sedimentation rates (Rs = 0.01–10 mm/yr) and diffu-
sivities (cv = 10�6 to 10�8 m2/s, smaller values typical for
deeper sediments) of fine-grained submarine sediments, that
depth to constant effective stress (and consequently, constant
strength) has a great range of values of depths (nearly all
>100 m). That would exclude the possibility of sedimenta-
tion-induced overpressure generating landslides (typically at
depths <100 m).
[17] As an improvement on the above, we no longer

assume a constant, depth-independent diffusivity and
account for an acute effective-stress dependence of per-
meability. Specifically, the Darcy relation above is now
written as

q z; tð Þ ¼ � k s′ z; tð Þ½ �
m

∂u z; tð Þ
∂z

ð8Þ

where here we take k(s′) = koexp(�s′/s∗), where ko is the
permeability at the seafloor, and s* is a parameter that
sets the sensitivity to effective stress. Indications are that
s∗ = 0.1 � 0.5 MPa for sediments from 30–70 m below
the seafloor to a few 100 m below [Henry, 2000; Long
et al., 2008] and damaged basin fault zones at km depth
[Revil and Cathles, 2002], and s∗ = 6 MPa for sedi-
ments at basin-scale depths (>1 km) [Tanikawa et al.,
2008].
[18] In this case, the equation governing the excess pore

pressure resembles that above, now with additional non-
linear terms moderated by the nondimensional group
A ≡ cv

og/Rss∗, which compares typical near-seafloor pres-
sures to the stress-sensitivity of the permeability, and for
which cv

o ≡ ko/mmv. Solving the equation numerically for
increasing values of A, the depth to constant effective
stress is reduced when compared to the previous assump-
tion of constant permeability (when cv of the constant
permeability case corresponds to cv

o for comparison).
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[19] As a simple case study, we consider a shallow-
water (�20 m) location on the southern shelf of the Mis-
sissippi River delta that was the site of two independent
sets of pore pressure measurements within six years and a
few hundred meters of each other [Bennett et al., 1982;
Prindle and Lopez, 1983]. The trend of the observations is
for the pore pressure to track the lithostatic stress begin-
ning at a depth of approximately 6 m (Figure 1). Assum-
ing a hydrostatic pore pressure gradient at the seafloor, we
find good agreement with the observations and the steady
consolidation model described by a constant-sedimentation

rate and effective-stress-dependent permeability, taking
g = 0.5gw, cv

o = 10�7 m2/s, s∗ = 0.01 MPa, and Rs = 10�9 m/s
(�30 mm/yr), which is of the order of rates measured in
regions of the shallow western shelf [Corbett et al., 2006].
The data is not well fit by the solution (7) for permeability
fixed at the seafloor value ko (Figure 1), neither when
allowing for a variation from the material properties and rates
chosen above (not shown). Interestingly, the s∗ used here for
the upper 20 m of nearshore sediments is an order smaller
than that suggested for accretionary prism sediments at
depths of several hundred meters and basin sediments on the
Gulf of Mexico continental slope. While the inference of s∗
from the shallow pore pressure data may seem anomalous,
perhaps due to the unaccounted for presence of biogenic gas,
its order of magnitude is consistent with studies on terrestrial
clays. Potts et al. [1997] arrange a compilation of prior
laboratory and field tests on the overconsolidated London
and Upper Lias clays as a plot of permeability with depth
showing a three order of magnitude change over 20 m.
Assuming the effective-stress gradient at the past maximum
pressure to be anywhere from hydrostatic (gw) to lithostatic
(2gw) and, as a coarse estimate, that past unloading and
weathering resulted in negligible change in the gradient of
permeability with depth, yields s∗ = 0.03–0.06 MPa.
[20] A solution approximate to this steady-sedimentation

model could have been arrived at analytically by examining
the case of steady seafloor-driven flow qc (positive toward
the seafloor) under a permeability that decreased exponen-
tially with effective stress. Under these conditions

qc ¼ k s′ zð Þ½ �
m

du zð Þ
dz

¼ � k s′ zð Þ½ �
m

ds′ zð Þ
dz

� g
� �

ð9Þ

which is an ordinary differential equation for s′ whose
solution [Rice, 1992] is

u zð Þ ¼ gzþ s∗ ln aþ 1� að Þexp �gz=s∗ð Þ½ � ð10Þ

where a = qcm/(gko). For s∗ = 0.01 MPa and a = 1/50 we
find a reasonable approximation to the steady-sedimentation
solution in Figure 1. For mf ≈ 10�3 Pa ⋅ s, ko = 10�15 m2,
and g = 0.5gw, this implies qc = Rs/10 ≈ 3 mm/yr for the
high sedimentation rate Rs chosen for steady sedimentation
solutions in Figure 1. This flow rate is not unreasonable for
the regime and may be an a posteriori choice.
[21] Using the two-dimensional model of steady sedi-

mentation with consolidation, we estimate conditions on the
continental slope. We assume a slightly lower sedimentation
rate, but choose a value that is relatively high for continental
slope sites, Rs = 10 mm/yr. We assume a range of possible
seafloor values of the coefficient of consolidation, cv

o = 10�5

to 10�8 m2/s, and a conservative s∗ = 0.25 MPa. We
calculate the steady pore pressure distribution with depth,
p(z) = gwz + u(z) with u(z) being the solution to the
consolidation model with a constant-sedimentation rate
and effective-stress-dependent permeability; and we esti-
mate a factor of safety that is the ratio of a frictional
strength (taken as tmax(z) = fp[s(z) � p(z)] with fp = 0.5)
to the shear stress t(z) = (gb � gw)sinq. The shallowest
depth to failure of a 4� slope is approximately 100 m
(taking gb � gw = 10 kPa in this depth range) with the
factor of safety being as low as 2 for half the depth of failure.

Figure 1. Comparison of pore pressure in excess of hydro-
static, u(z), determined by separate measurements on the
southern shelf of the Mississippi delta (points) and by mod-
els representing steady sedimentation (colored lines). Mod-
els treat permeability either as a constant (dashed red) or as
an exponentially decreasing function of effective stress
(blue). Two of the models are direct solutions of steady sed-
imentation-consolidation problems with a hydrostatic pore
pressure gradient at the seafloor while the third (dashed blue)
is the solution to a problem of constant flow qc (hence its
departure at shallow depths). Total normal stress of models
(black) plotted for comparison.
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While the depth of failure is shallower than predicted by a
constant-permeability model using the near-seafloor perme-
ability alone, it is comparatively deep relative to commonly
observed landslides and would require long periods of high
(10 mm/yr) sedimentation. This indicates that even with
efficient overpressure by permeability reduction, failure of
sediments on continental slopes by fast sedimentation alone
may not be likely. In sections 3 and 4, we examine potential
sources of perturbations to already elevated pore pressures
and how such perturbations may create a local failure.

3. Sources of Local Increases in Pore Pressure
on Seafloor

[22] Localized pore pressures near the seafloor may be
brought about by high-permeability pathways that facilitate
the drainage of a compacting basin. The pathways may take
the form of faults [e.g., Screaton et al., 1990], or even
inclined coarse-grained turbidite deposits on buried paleo-
canyons, and are often expressed as depressions on the
seafloor [e.g., Gay et al., 2007]. Dugan and Flemings
[2000] quantify potential pore pressure changes with a
two-dimensional sedimentation-consolidation calculation of
a nonuniform sedimentation scenario. A resulting high
permeability conduit may elevate near-seafloor pore pres-
sures to lithostatic stresses at a site with known failures.
Such channelized flow may sufficiently elevate pore pres-
sures to create liquefied sediments, like those retrieved
from a deepwater core of a pockmark above an apparent
fluid chimney [Gay et al., 2006]. In this instance, the 800
m-wide pockmark appeared on seismic data as the seafloor
expression of a vertical fluid seep rooted in a buried
paleochannel. The pore pressure path followed by the
buoyant rise of fluids pressurized at depth would likely
meet liquefaction conditions well below the seafloor, as
shown by surface and subsurface disturbances induced by
biogenic or thermogenic gas seeps [e.g., Pinet et al., 2008].
[23] Methane hydrates may present an alternative source

of quasi-statically elevated pore pressures. Implications in
landsliding are driven by the coincidence of some conti-
nental slope landslide regions with gas hydrate [e.g., Kayen
and Lee, 1991]. The pore pressures may come directly from
hydrate decomposition, or by indirect pressurization. The
excess pore pressures generated by hydrate dissociation are
generally large, even when considering fluid flux and finite
dissociation rates. Dissociation at the base of the stability
zone by sedimentation burial, uplift, or sealevel drop, may
be more than sufficient to meet a shear-strength criterion [Xu
and Germanovich, 2006]. However, the base of the stability
zone is often greater than 200 m below the seafloor [Haacke
et al., 2007], and would imply relatively deep-seated large
landslides. More favorably to landsliding, gas plumes may
indicate hydrate decomposition at shallower depths along
the upslope stability limit [Westbrook et al., 2009]. How-
ever, the pore pressure calculations of Xu and Germanovich
[2006] indicate that levels may even exceed lithostatic
stresses, which may create features of vertical fluid expul-
sion or sediment disturbance, like those observed in seismic
data by Berndt et al. [2005] over lengths of 1–10 km coin-
ciding with a landslide scarp. They propose that high dis-
sociation rates accompanying the rapid erosion resulted in
observed subsidence by fluid expulsion with fluidization of a

finite thickness of overlying sediments, implying that pore
pressures were elevated near lithostatic stresses at least 50–
100 m above the dissociated region over kilometer length
scales. The loss of matrix support by hydrate dissolution or
decomposition, and subsequent underconsolidation, has also
been proposed to elevate pore pressures broadly at the sta-
bility base [Kvenvolden, 1993]. Sultan et al. [2010] advo-
cated similar underconsolidation at shallower depths to
explain the apparent progression of pockmark formation
through observed morphological stages; there under-
consolidation was presumed result from focused flow from
depth carrying a transient supply of methane that stimulated
first hydrate growth before dissolution.
[24] The overpressure by gas accumulation at the base of

the stability zone has often been cited as being sufficient to
drive an invasive flow to the seafloor expressed as seafloor
pockmarks and pipes [Bünz et al., 2003; Flemings et al.,
2003; Gay et al., 2007; Liu and Flemings, 2007; Cathles et
al., 2010], as well as by conduits created by induced nor-
mal faulting [Hornbach et al., 2004]. The elevated pore
pressures en route to the surface may be sufficient to create
liquefied sediments, like that for the cold seeps discussed
above (as in the formation of pockmarks). Pockmark size
can then be an indication of pore pressure distributions
(whether sourced in hydrates or not) and range from a few
tens of meters (e.g., in shallow water) [Andrews et al., 2010]
to kilometer length scales [e.g., on the continental slope;
Sultan et al., 2010].

4. Rupture Nucleation by Local Increases
in Pore Pressure

[25] In this section we investigate the growth of a slipping
rupture in response to local elevations in pore pressure. Slip
is presumed to start at a depth z = h (in the coordinate of
section 2), along a surface running parallel to the seafloor or
Earth’s surface (Figure 2). The mode of failure examined
here is solely the accumulation and propagation of slip: i.e.,
we do not consider additional modes as might occur, for
instance, at pore pressures approaching the total overburden.
Here, the failure surface is predetermined, as may be dictated
by natural stratification or boundaries. The shear strength,
tmax(x,t) of the slip surface is assumed to be purely frictional

tmax x; tð Þ ¼ f d x; tð Þ½ � s x; tð Þ � p x; tð Þ½ � ð11Þ

where s(x, t) and p(x, t) are the total slope-normal stress and
pore pressure along the slip surface and f is a friction coef-
ficient taken as dependent on the local slip of the surface,
d(x, t). In all sections we will presume that the friction
coefficient weakens with slip. In section 4.1 we examine a
small-slip case where a residual level of friction is not yet
reached. There we show that growth of the slip surface
transitions from a quasi-static growth forced by pore pres-
sure to an unforced, dynamic growth. In sections 4.2 and 4.3
we include the possibility of reaching a residual friction and
show that this may lead to the arrest of dynamic rupture
growth (as also demonstrated by Garagash and Germano-
vich, submitted manuscript, 2012). In sections 4.1–4.3 we
presume that the rupture occurs far from the free surface and
in section 4.4 we show that accounting for its proximity
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leads to a transition in nucleation behavior between deep and
shallow limits.
[26] Before local pore pressure increases begin, we

assume that there is a constant shear stress to, total normal
stress so (positive in compression), and pore pressure po
acting along the depth of the future slip surface. The shear
and total normal stress may be those of an infinite slope and
in the submarine case, the initial pore pressure may corre-
spond to that calculated in section 2 at a particular depth
z = h. The initial effective normal stress is then s′o = so � po.
[27] Given the variety of means to increase pore pressures,

as a first step we simplify the form that a pore pressure
increase takes. The purpose is to isolate the first-order
characteristics, namely, the magnitude of the increase and its
distribution in space. The simplified distribution is locally
peaked and increases uniformly in space at a constant rate R.
The amount the pore pressure falls with distance from the
peak is given by a function q(x). The pore pressure begins to
elevate from po and we are first interested at the point of time
when slip is initiated. For a peak friction coefficient fp,
failure will first occur when Dp = s′o � to/fp. We take this
point in time to be t = 0. This defines the pore pressure
increase as

Dp x; tð Þ ¼ s′o � to=fp
� �þ Rt � q xð Þ ð12Þ

at x for which (12) is positive, with Dp(x, t) = 0 otherwise.
We take a simple symmetric function q(x) = kx2/2 whose
single parameter k > 0 is the sharpness of the pore pressure
increase. The peak magnitude of the pore pressure is given
by the nondimensional parameter

T ≡
fp
to

Rt ð13Þ

T = 0 when slip initiates at t = 0 (and x = 0) and T = 1 some
time later when the pore pressure reaches the total slope-
normal stress ( p = so) at x = 0.
[28] For failure to initiate at a depth 20 m below the sea-

floor of a 2� slope under initially hydrostatic conditions, the

point of first failure (T = 0) corresponds to a pore pressure
increase of approximately 93 KPa. This increase represents
93% of the effective initial overburden (100KPa,
corresponding to T = 1). For comparison, for failure to ini-
tiate at a depth 5 m below the earth surface of a 20� slope
under dry, subaerial conditions, point of first failure corre-
sponds to a pore pressure of 25 KPa (T = 0), representing
�25% of the slope-normal stress (95 KPa, T = 1).
[29] We take the friction coefficient at a point on that

surface to weaken linearly with slip d from a peak value fp to
a residual value fr after slipping an amount dc. For slip d < dc,

f dð Þ ¼ fp � wd ð14Þ

where w = (fp � fr)/dc. The dimensionless variable for slip is
�d ≡ dw=fp , which may range between 0 when f = fp and 1
when f = 0 (the lowest possible value for fr). For over-
consolidated sediments, fp, fr, and dc may be estimated from
the ring shear experiments of Bishop et al. [1971]. For the
London Brown and Blue Clays sampled, friction drops from
fp = 0.45 to fr = 0.2–0.25. The friction coefficient does not
strictly follow a linear drop to residual value, but the initial
linear slip-weakening rates are w = 0.08–0.3/cm. Normally
consolidated sediments may also weaken with slip and have
comparable weakening rates. This is the case if we presume
that the initial decrease in friction of 1) an aged, normally
consolidated soil is comparable to the decrease in friction of
2) an overconsolidated clay that has a) been sheared to a
residual friction and b) been allowed to regain some strength
under fixed displacement. While the strength gain is time
dependent, for experiments on 2) with healing times of 100–
200 days the drop in friction coefficient with slip is low
(fp � fr ≈ 0.05), but occurs over smaller displacements, with
initial slip-weakening rates in the range w = 0.3–0.8/cm
[Stark et al., 2005; Carrubba and Del Fabbro, 2008; Stark
and Hussain, 2010]. A freshly sedimented seafloor, like
that presented in section 2 with accumulation rates of the
order of 1 mm/yr, would represent a potentially well aged,
normally consolidated slope. However, if erosion and prior

Figure 2. Superposition of a peaked pore pressure profile along a depth h (blue) on an illustration of a
slipping region that parallels a slope surface (both black). The profile shown corresponds precisely to that
which would generate the illustrated slipping region. The slipping region is enlarged by a gradual increase
of pore pressure Dp(x, t) to a critical extent, illustrated here at t = tc, beyond which its growth may con-
tinue without any further pressure increase. The value Dp(0, 0) = so′ � to/fp is that at which a failure
criterion is first met and sliding is initiated at the origin. A frictional length scale ‘ is used to denote
relative depth by H ≡

ffiffiffiffiffiffiffi
h=‘

p
. Here to/so′ = 0.25 and fp = 0.5 (i.e., Dp(0, 0) = 0.5so′), H = 0.5, and

Kh‘ ¼ 1 is the dimensionless profile curvature defined in text. Interestingly, in the case considered here,
only a marginal increase past Dp(0, 0) is required to bring the slope to the critical point.
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landslide events remove material, then the uncovered sea-
floor will be effectively overconsolidated.
[30] The slip weakening introduces a length scale

‘∗ ≡
m∗
s′ow

≡
m∗dc

tp � tr
ð15Þ

like that in (2), where here tp/r = fp/rs′o are nominal peak and
residual strengths. We estimate ‘∗ under two conditions: a
subaerial slope and a submarine one. In subaerial conditions,
we presume failure occurs 5 m below the surface and esti-
mate the initial effective normal stress as that of an infinite
slope, s′o = gbzcosq, with a slope of q = 20�, and a typical
sediment unit weight gb ≈ 2gw. For submarine conditions,
we presume failure occurs 20 m below the seafloor and take
hydrostatic conditions where s′o = (gb � gw)zcosq, with a
slope of q = 3�, and the sediment unit weight gb ≈ 1.5gw. The
sediment’s elastic stiffness is perhaps the most variable
quantity, and we consider that the shear modulus m may
range between 10–100 MPa, with n = 1/3 (corresponding to
shear wave speeds of a few hundred meters per second; and
m∗ = 15–150 MPa for mode-II deformation). For both
environments, we take an intermediate value for the slip
weakening rate w = 0.5/cm. This yields similar estimates for
‘∗: ‘∗ ¼ 3:2–32m for subaerial conditions, and ‘∗ ¼ 3–30m
for submarine conditions.

4.1. Nucleation Far From a Free Surface

[31] Here we assume that the slipping length at nucleation
is much shorter than the depth h below the free surface. In
this case, the shear stress along the plane of the slip surface is,
for a linearly elastic material [e.g., Bilby and Eshelby, 1968]:

t x; tð Þ ¼ to � m∗
2p

Z aþ tð Þ

a� tð Þ

∂d x; tð Þ=∂x
x� x

dx ð16Þ

where a+ and a� are the endpoints of the slipping region
(Figure 2). Over the slipping region this shear stress must
meet the strength requirement

t x; tð Þ ¼ fp � wd x; tð Þ� �
s′o �Dp x; tð Þ½ � ð17Þ

with the prefactor replaced by fr once slip exceeds dc. In this
section we will assume that fr is not yet engaged and will
address this case in section 4.2.
[32] In this “deep” context and for pore pressure profiles

of the type discussed following (12), a more convenient
length scale is

‘ ≡ ‘∗
tp
to

≡
fpm∗
tow

ð18Þ

The ratio ‘=‘∗ can be estimated assuming infinite slope
conditions where either to/s′o > tanq when pore pressure is
in excess of hydrostatic or to/s′o = tanq for “dry” subaerial
slopes or submerged slopes with hydrostatic pressure dis-
tributions. For the last set of cases and fp = 0.5, to/
tp ≈ 0.07 � 0.7 for q = 2–20�, meaning that ‘ for low-
angle, deepwater continental slopes is an order larger than
that for steeper subaerial counterparts.
[33] It is the length ‘ with which rupture tip lengths are

accordingly nondimensionalized to an average length

�a tð Þ ≡ aþ tð Þ � a� tð Þ½ �=2‘, with an asymmetry measure
�b tð Þ ≡ aþ tð Þ þ a� tð Þ½ �=2‘ , and also with which distance is
normalized to �xo ≡ x=‘� �b tð Þ . For the symmetric increase
(12), b(t) = 0.
[34] The curvature of the pore pressure non-

dimensionalizes to

K ≡
fp
to

k‘2 ð19Þ

The convenience of the above scaling is that the profile
is solely described by parameters T and K, so long as
the endpoints of the crack are within the curved portion
of the pore pressure profile (as in Figure 2). This is
reasonably assumed to be the case in this section.
(Another parameter, to/tp ≡ to/( fps′o), determines the
location where Dp(x, t) = 0.)
[35] For a given curvature K, the slip distribution is solved

at each stage of the pore pressure increase (T ) using a Gauss-
Chebyshev quadrature collocation technique (Appendix B).
The peak slip (located at the crack center for this symmetric
loading scenario) and crack length are presented in Figure 3.
Each path corresponds to a pore pressure increase with a
fixed curvature. A common feature of all the paths is the
tendency for greater growth of the crack half-length a(t) and
peak slip dmax(t) in response to a given increment of the pore
pressure as the increase progresses. Eventually a point is
reached where the growth rates of these quantities are
unbounded (and continuation of the quasi-static solutions
requires a decrease in pore pressure). Where the rates
become unbounded (a time labeled t = tc) marks the onset of
the nucleation of dynamic rupture: i.e., once the pore pres-
sure reaches the peak levels in Figure 3, rupture may con-
tinue to propagate as an accelerating rupture, without any
further increase in pore pressure, driven by frictional weak-
ening. The elastodynamic ruptures are expected to accelerate
to a limiting speed of the order of the shear wave speed (for
sediments, typically of the order of 100 m/s).
[36] In the limit of very broad curvatures (K → 0), the

quasi-static problem reduces to an eigenvalue problem like
that of Uenishi and Rice [2003]. The limit of the eigenvalue
problem (a tcð Þ=‘ ≈ 0:579; Appendix A1) is met by the
numerical solutions for small K. Such broad curvatures
induce sliding over a large region for only small increases in
pore pressure past that which would first start sliding at the
origin (T = 0), and the critical increase Tc and peak slip
dmax(tc) are very small. In contrast are the sharper loading
profiles K = 1, 5 that require more substantial pore pressure
increases to reach the point of nucleation, accumulating
much more slip in the process.
[37] We recall that slip is nondimensionalized such that

the friction coefficient is f ¼ 1� �d
� �

fp . At the nucleation
point corresponding to the case K = 5 in Figure 3, the friction
coefficient at the center of the crack has been reduced to
f ≈ 0.4 fp. For the loading history corresponding to the
sharper profile (K = 10), we see that so much slip accumu-
lates that nucleation ultimately occurs for �dmax > 1, and the
result can be dismissed as an unphysical representation (i.e.,
f < 0). However, had we imposed a residual friction, say
fr/fp = 0.2, on the case K = 10, pore pressures reach the
total slope-normal stress (T = 1) before nucleation occurs
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(case not shown). Therefore, determining the relative
sharpness of a profile is important for determining if
modes of failure other than pure slip can be expected (i.e.,
if T = 1 is reached), as well as the total amount of slip
before dynamic rupture. Figures 3c and 3d show condi-
tions at nucleation over a broad range of curvatures. Most
remarkably, the critical length at nucleation is relatively
insensitive to the profile curvature, although the accrued
slip may vary widely. We note here that the slope angle is
subsumed in the definition of K (implicitly, via to). As a
result, K � 1/sin3q, implying that shallow slopes are more
likely to have a large K for a wide range of dimensional
curvatures k.
[38] Figure 4 takes snapshots along the depth z = h at fixed

points in time for the load path of the case K = 1 of Figure 3.
Figure 4a shows the distribution of slip up to the point of
nucleation (solid lines), followed by the physically unat-
tainable, post-peak solutions (dashed lines). The approach of
nucleation is noticeable in that a modest increase of pore
pressure results in a significant growth of the rupture tips

and of the amount of slip. Figure 4b shows comparable plots
for the shear stress. Plotting its ratio with the effective nor-
mal stress in Figure 4c shows the weakening of the friction
coefficient from its peak value (here arbitrarily chosen to be
fp = 0.5). The overall peaked structure of Figure 4c is owed
to the peaked distribution of the pore pressure increase.
[39] From this analysis, the most unstable form of loading

is a broad increase in pore pressure, in the sense that load-
ings of this type require the lowest peak pore pressure and
result in the shortest critical lengths (as well as the least
amount of slip at nucleation). Given that m∗ is larger in mode
II than in mode III, rupture growth in mode III will reach its
critical value sooner than in mode II, provided pore pressure
increases have approximately equal distribution in the along-
slope and across-slope directions. Additionally, for sharper
pore pressure increases, the trend of their unstable points is
toward the point where frictional strength of the interface is
lost (T = 1). While our model is limited to T < 1, we will later
briefly discuss potential modes of failure once T = 1.

Figure 3. (a) Enlargement of crack length a(t) with increasing pore pressure Rt, nondimensionally as T,
for profiles of pore pressure with various curvatures k, nondimensionally as K. (b) Plot of maximum slip
dmax(t), occurring at x = 0, against pore pressure increase. The nucleation of a dynamic rupture occurs at
the peak of the loading paths and the crack propagates without any further increase in pore pressure. (c)
Plot of peak slip (red) and pore pressure increase (blue) against the crack length at the point of nucleation.
(d) Plot of peak slip at nucleation against the nondimensional profile curvature. These analyses assume
that fr/fp < (1 � wdmax/fp), implying that solutions with wdmax/fp > 1 are unphysical.
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4.2. Residual Friction and Dynamic Rupture Arrest
Implications

[40] A residual friction coefficient fr, typically a moderate
fraction of fp, is engaged at a slip of dc and such a cutoff
affects rupture propagation. If the initial shear stress is suf-
ficiently low such that to < frso′ (≡ tr) and rupture is initiated
with relatively little slip with respect to dc (e.g., for low K)
one may expect the rupture to reach instability and proceed
dynamically. However, one would also expect the rupture to
arrest as sufficient slip accumulates such that the strength
approaches its residual value. D. I. Garagash and L. N.
Germaovich (private communication, 2010) observed such a
potential for dynamic rupture arrest for their in-plane point-
source loading scenario. Furthermore, dynamic rupture may
potentially be reinitiated with further increase in pore pres-
sure when tr < to < tp(≡ fpso′ ).
[41] Figure 5a continues solutions of Figure 3 now con-

sidering the possibility that slip may exceed the slip weak-
ening distance dc, engaging residual friction. The solutions
shown are those for slopes with very little initial shear stress,
as may be the case for very shallow slope angles (low to/tp).
Under these low slope angles, the gravitational shear stress
would be insufficient to drive a rupture at a nominal residual
strength tr = frs′o. Not surprisingly then we find that the
dynamic rupture arrests once it has progressed away from
the peak in pore pressure into a region that is closer to the
ambient effective normal stress s′o. The dynamic rupture
initiation and arrest are marked for the particular case fr/
fp = 0.5 by the points (A) and (B), respectively. The arrest
lengths are longer for lower residual strengths, fr/fp. Con-
tinued quasi-static slip and growth of the rupture is possible
after arrest. However, this requires continued pore pressure
increases that eventually would require reaching the slope-
normal stress. (Also shown are unphysical solutions when a
residual friction is neglected and friction is allowed to follow
the linear slip-weakening path into the negative range.)
[42] Not all ruptures will arrest and Figure 5b shows the

effect of increasing the slope angle. Continuing with the
solution for fr/fp = 0.5 in red of Figure 5a, we increase
the background shear stress to, which is measured using a
prestress ratio

r ≡
to � tr
tp � tr

≡
1

1þ S
ð20Þ

(as an alternative to the commonly used S-ratio in fault
rupture dynamics). Here we find that by increasing to/tp
(more specifically, r), there is a transition of ruptures that
arrest (e.g., the cases r = �1, r = 0) to those that may
continue to propagate dynamically once initiated (r = 0.4).
[43] There is an intermediate case shown in which rupture

arrests (B′), and, if pore pressures continue to increase, a
second nucleation event may occur (C) at which point the
rupture propagates indefinitely. The instabilities of the (C)-
type occur for low, positive r. At the point (C) the friction
has reached residual over much of the length of the crack.
Viesca-Falguières and Rice [2010] made use of a small-
scale yielding approximation (i.e., singular crack theory with
critical energy release rate (fp � fr)s′odc) to examine this
behavior and found the crack length at the (C)-type insta-

bility, a Cð Þ
c =‘∗, scales as 1/(4pr2) in the small-r limit.

Figure 4. Distribution of (a) slip and (b) shear stress
change for various levels of pore pressure increase
T ≡ Rtfp/to and fixed curvature K≡fpk‘2=to ¼ 1. (c) Ratio
of shear stress to effective normal stress for fp = 0.5 and
to/so′ = 0.25. Solid curves are those distributions originating
from a nucleated crack of zero length to an unstable limit
(bold), dashed curves are unstable distributions beyond the
point of nucleation.
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[44] Arrest may be precluded if the friction at large slip is
further reduced by additional mechanisms. For deep-seated
landslides undergoing rapid slip, shear heating may be suf-
ficient to elevate temperatures for thermal pressurization or
material decomposition to occur [Voight and Faust, 1982;
Vardoulakis, 2002; Goren et al., 2010]. In the fault nucle-
ation context, Garagash and Germanovich (submitted man-
uscript, 2012) estimated the expected pressurization during
the dynamic phase to effectively reduce the domain over
which arrest is expected. In the context of rate-and-state
friction, this breakthrough effect of such dynamic weakening
is imaginable to extend to regions that are nominally rate-
strengthening at low slip-velocities [e.g., Noda and Lapusta,
2011; Faulkner et al., 2011].

4.3. Elastodynamic Solutions With Rupture Arrest

[45] This predicted dynamic growth and arrest may be
observed in finite element simulations of dynamic rupture
propagation in response to a sudden application of the
critical pore pressure increase Dp(x, tc). Specifically, in
place of modeling the quasi-static process of nucleation to
the critical crack size followed by the dynamic growth
process, an elastodynamic problem is considered with
Dp(x, tc) as the initial condition, which is discretized over
the contact surface as a position-dependent, nodal pore
pressure force. This pore pressure force reduces the effec-
tive normal force when evaluating the frictional strength of
a node. We use the finite element package ABAQUS/
Explicit in a similar manner as that by Templeton and Rice
[2008] and Viesca et al. [2008], except to be consistent
with our quasi-static model, only considering elastic
behavior away from the contact surface. (Those investiga-
tions, as well as those of Viesca and Rice [2009], consid-
ered elastic-plastic response of material outside the slip
surface.)
[46] The finite element grid spacing is Dx ¼ ‘=50 and the

domain (discretized with four-noded plane-strain, reduced
integration elements) has a height and width of 10‘ � 20‘,
with a split-node contact surface located at half-height and

absorbing boundary conditions (“infinite” elements) along
the outer boundaries. Two cases are considered for which
K = 1 and fr/fp = 0.5: Case 1) to/tp = 0.5, and Case 2) to/
tp = 0.7. Plots of slip at constant intervals of time,Dt ¼ ‘=cs
(where cs is the shear wave speed), show the gradual growth
beyond the critical crack length and the subsequent propa-
gation. Case 1) (Figures 6a and 6b) arrests at a distance close
to that estimated by the quasi-static calculation and denoted
by the dashed lines. Case 2) (Figures 6c and 6d), for which
the sole change is an increase in background shear stress,
shows indefinite rupture propagation. Such behavior is not
restricted to nucleation by pore pressure, but can also be
shown to occur in nucleation by local increases in shear
stress as in the work of Ampuero et al. [2006] and Ripperger
et al. [2007]. Their studies show, that for a slip-weakening
rupture nucleated by a local peak in the shear stress, net
increases in a heterogeneous background shear stress (i.e., an
increase in a measure comparable to r) mark a sharp transi-
tion from arresting dynamic ruptures to those that rupture the
entire fault surface.

4.4. Nucleation Near a Free Surface

[47] To account for a rupture comparable in length to its
depth below the free surface, the change in shear stress due
to slip requires additional terms to the integral of (16)

t x; tð Þ ¼ to � m∗
2p

Z aþ tð Þ

a� tð Þ

∂d x; tð Þ
∂x

1

x� x
þ k1 x� xð Þ

	 

dx ð21Þ

and the strength requirement in this case is

t x; tð Þ ¼ fp � wd x; tð Þ� �
s′o þDs x; tð Þ �Dp x; tð Þ½ � ð22Þ

where changes in the total normal stress on the surface due
to slip are

Ds x; tð Þ ¼ �m∗
2p

Z aþ tð Þ

a� tð Þ

∂d x; tð Þ
∂x

k2 x� xð Þdx ð23Þ

Figure 5. Solutions of crack length a(t) with increase in pore pressure T at a fixed curvature K = 1. Solid
and dashed lines represent stable and unstable quasi-static solutions. (a) Solutions for variable fr/fp, and the
solution neglecting residual friction. In these solutions the shear stress is small (low to/tp). Starting with
the solution of Figure 5a, fr/fp = 0.5 (red). (b) Solutions showing the result of increasing shear stress to/tp
(black).
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The nonsingular kernel functions k1,2(x � x) account for
shear and total normal stress changes, respectively, due to
slip in proximity of a free surface. When the rupture length is
much less than the depth, then the contributions of those
kernels are negligible and (21) reduces to (16), the standard
equation for shear stress (with no normal stress change) due
to a distribution of dislocations along a planar surface.
Taking v ≡ x � x, the kernals are [e.g., Head, 1953]

k1 vð Þ ≡ �v

4h2 þ v2
þ 8h2v

4h2 þ v2ð Þ2 þ
4h2v3 � 48h4v

4h2 þ v2ð Þ3 ð24Þ

k2 vð Þ ≡ 24h3v2 � 32h5

4h2 þ v2ð Þ3 ð25Þ

For a symmetric distribution of slip near the free surface,
their contribution is an antisymmetric change in normal
stress and a symmetric change in the shear stress. (As sum-
marized by Viesca and Rice [2011], misprints in early
reported results for such kernels have unfortunately propa-
gated through the literature.)

[48] The depth h should be measured relative to a depth-
independent length scale. This excludes ‘ (and ‘∗ ), as its
definition depends on to (or s′o), which is proportional to
depth for the simple infinite slope model: to = gbhsinq. One
depth-independent length scale is the geometric mean of
frictional length ‘ and depth h

ffiffiffiffiffi
h‘

p
≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m∗fp

gbsinqw

s
ð26Þ

which depends purely on slope orientation and material
properties, which are implicitly assumed here to be inde-
pendent with depth, to first approximation. This length scale
enters naturally into shallow slope problems and are what
scale the critical lengths in shallowly buried fracture analy-
ses of slopes (e.g., lu in Puzrin and Germanovich [2005],
which corresponds to

ffiffiffiffiffiffiffiffiffiffi
4h‘∗

p
here). The nondimensional

depth is then defined as

H ≡
hffiffiffiffiffi
h‘

p ð27Þ

Figure 6. (a–b) Dynamic rupture arrest (Case 1) and (c–d) continuation (Case 2) as indicated by plots of
slip and shear stress at time intervals of ‘=cs. The cases correspond to two cases of Figure 5b. In both cases
fr/fp = 0.5, and the sole difference is an increase in shear stress from to/tp = 0.5 for Case 1 to to/tp = 0.7
for Case 2. Each rupture is nucleated by suddenly applying the same critical loadingDp(x, tc) (with profile
curvature K = 1) as the initial condition. The dashed lines in (a–b) correspond to arrest length predicted by
quasi-static solution (point (B) in Figure 5b).
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Estimates of H in subaerial and submarine environments
yields a perhaps surprisingly narrow range, assuming sim-
ilar weakening behavior in both environments when esti-
mating ‘. Taking the representative scenarios used to
estimate ‘∗ in the introduction of section 4, yields ‘ ¼
4:4–44 m and H = 0.34–1.1 in the subaerial case and for
the submarine case (hydrostatic conditions), ‘ ¼ 43–430 m
and H = 0.22–0.68.
[49] We look for the nucleation behavior at variable depth,

with an interest in the limit of small and moderate H. We
use a locally peaked pore pressure profile as in (12) with
a spatially uniform loading at rate T, but here choose a
nondimensionalization of the curvature using the depth-
independent length scale

ffiffiffiffiffi
h‘

p

Kh‘ ≡
fp
to

kh‘ ð28Þ

Then, fixing Kh‘ , the only parameter varied is the burial
depth of the sliding surface. Additionally, for the cases
considered here the friction coefficient is presumed to
remain on the linear portion of the slip-weakening curve
(i.e., the slip remains below dc).
[50] Figure 2 shows the geometry of the crack and the pore

pressure profile at nucleation for the particular case H = 0.5,
Kh‘ ¼ 1, to/so′ = 0.25 and fp = 0.5. Considering a scenario
that leads to quasi-static crack lengths much longer than
depth, Figure 7 shows slip distributions, shear stress and
normal stress changes at various levels of loading T up to
(solid) and beyond (dashed) the point of nucleation.
[51] In Figure 8 we plot the average crack lengths a(tc),

asymmetry length b(tc), peak slip dmax(tc), and pore pressure
increase Tc at the point of nucleation of dynamic rupture as
they depend on the depth H, considering the particular case
Khl = 0.01. Plotting nucleating crack lengths (Figure 8a),
there is a clear transition from an effectively deep regime
where a tcð Þ � ‘ to a shallow regime in the limit H → 0
where a tcð Þ � ffiffiffiffiffi

h‘
p

. Similarly to the deep limit for such
broad increases, the nucleating pore pressure increases
(beyond that required to start sliding) and peak slip are also
small and tend toward fixed values in the shallow limit
(Figures 8c and 8d). Interestingly, the rupture asymmetry
measure at nucleation, b(tc), increases as rupture lengths
become progressively shallower, with a peak when ‘ and
h become comparable (Figure 8b). At shallower conditions,
the asymmetry decreases and scales as b(tc) � h and at all
depths the value b(tc) is much smaller than the length a(tc).
Given that it is the normal stress change, Ds, that con-
tributes to rupture asymmetry, this implies that its contribu-
tion is comparatively small. Consequently, we neglect this
term to arrive at the eigenvalue problem of Appendix A2. In
solving that eigenvalue problem in the limit Khl → 0 for a
range of a(tc)/h, we closely reproduce the solution of
Figure 8a. In the shallow limit, the eigenvalue corresponds
to the critical crack length a tcð Þ ≈ 2:2

ffiffiffiffiffi
h‘

p
. As for nucle-

ation far from the free surface, the nucleation lengths in
proximity to the surface are also relatively insensitive to
the sharpness of the pore pressure profile. Increasing the
sharpness by two orders of magnitude to Kh‘ ¼ 1 leads to
a nucleation length in the shallow limit of a tcð Þ ≈ 2:5

ffiffiffiffiffi
h‘

p
.

(While the rupture length varies little, the peak slip and

Figure 7. Distribution of (a) slip, (b) shear stress, and (c)
total normal stress for given pore pressure increase T with a
fixed curvature (normalized such that Khl ≡ fpkh‘=to ¼ 1),
and fixed effective depth (H ≡

ffiffiffiffiffiffiffi
h=‘

p ¼ 0:1, such that x-axis
limits are � 40h). Curves in black outline those distributions
originating from a nucleated crack of zero length to an unsta-
ble limit (bold).
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pore pressure increase at nucleation in this sharper case do
increase: �dmax tcð Þ ≈ 0:85 and Tc ≈ 0.65.)
[52] As discussed in the introduction, much of the early

work applying fracture mechanics to slope stability essen-
tially assumed that conditions were such that the critical
length was in this “shallow” regime. According to the results
here, this seems to be a reasonable assumption provided the
depth measure H is sufficiently low. Since H is the square
root of ratio of h=‘ (or alternatively, h=‘∗), it may be difficult
to meet a condition that H < 10�2, where results generally
appear to become depth-independent and critical crack
lengths scale as

ffiffiffiffiffi
h‘

p
(or

ffiffiffiffiffiffiffi
h‘∗

p
). For example, to meet the

criterion H = 10�2 with h = 20 m would require ‘ ¼ 200 km.

5. Discussion and Conclusions

[53] We modeled the growth of a landslide slip surface
as a shear fracture occurring in an elastic medium. The

growth is initially driven by a local high in the pore
pressure distribution. Because the strength of the slip sur-
face weakens with slip, a point is reached where the slip
surface may continue to grow without any further increase
in pore pressure. This growth is fast and dynamic and is
taken to be the onset of gravitational acceleration of the
landslide downslope.
[54] This dynamic growth of the slip surface may arrest,

and with it, the downslope acceleration of the landslide
mass. Shallow slopes, like those typically found on the
seafloor, are particularly susceptible to arrest. Continued
acceleration of the slope is dependent either on further
increases in pore pressure or dramatic weakening mechan-
isms during the period of rapid slip.
[55] The relevant lengths are the depth of the slip surface,

h, and a length scale ‘ that arises from the slip-weakening
behavior of the surface. We calculate the length of the slip
surface and the slip accrued at the onset of catastrophic

Figure 8. (a) Crack half-length, (b) crack asymmetry, (c) peak slip, and (d) pore pressure increase all at the
nucleation condition for fp = 0.5, fixed non-dimensional pore pressure curvature (Khl ≡ fpkh‘=to ¼ 0:01),
and variable effective depth (H ≡

ffiffiffiffiffiffiffi
h=‘

p
). For such broad increases in pore pressure, the plots show and a

limiting behavior for ruptures much longer than their depth, and particularly a transition in nucleation
behavior from an effectively deep scaling at large H, a tcð Þ ≈ 0:579‘ , to a shallow one at low H,
a tcð Þ ≈ 2:2

ffiffiffiffiffi
h‘

p
. The former scaling follows from the eigenvalue problem of Uenishi and Rice [2003],

and the latter from a comparable eigenvalue problem in section A2.
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failure, as well as the pore pressure required to reach this
onset. When pore pressure increases are very broad we find
that the total length of the rupture at onset, 2a(tc), depends
on a ratio of these two lengths, H ≡

ffiffiffiffiffiffiffi
h=‘

p
.

[56] We plot in Figure 9 the expected nucleation lengths as
they depend on depth of the slip surface for submarine and
subaerial slope conditions. The predicted nucleation lengths
for submarine conditions are nearly an order larger than
subaerial. Furthermore, the few-hundred-meter lengths are
comparable in size to seafloor pockmarks. As pore pressures
that generate pockmarks approach lithostatic conditions,
there is the potential to nucleate an event with an initial size
of Figure 9. In contrast, the nucleation lengths in subaerial
events are predicted to be much smaller. One limitation not
considered is the effect of topography, which may limit
rupture propagation across- or along-slope. In our analyses
we assumed a subsurface rupture running parallel to a uni-
form slope.

[57] Additionally, we have not investigated the potential
continuation of solutions involving other modes of defor-
mation, in addition to the propagation of slip, once pore
pressures reach the normal stress. If the least compressive
stress is instead inclined toward the slope-parallel direction
(e.g., as may occur in normally consolidated slopes), then a
hydraulic fracture may be initiated toward the slope surface
before pore pressures reach the slope-normal stress. While
this fracture would relieve pore pressure on the slip surface,
the resulting stress concentrations created by the opening of
the fracture may drive slip and propagate the shear rupture.
If the least compressive stress is normal to the slope (e.g., in
overconsolidated slopes) or if natural layering creates a
preferential slope-parallel conduit for fluid flux, then a
hydraulic fracture may be initiated. This fracture would be
an efficient means of redistributing pore pressures at the
level of the normal stress, effectively creating a region with
no shear resistance. With continued fluid supply enlarging

Figure 9. Variation of critical slip surface lengths, 2a(tc), with burial depth under submarine and subaer-
ial conditions. These lengths mark the onset of dynamic slip surface growth and downslope acceleration.
Solutions presented for case where pore pressures are nearly uniformly elevated over the length 2a(tc) (as
in Figure 8a). Submarine conditions reflect a sediment bulk weight of gb = 1.5gw and shallow slope
angles. Subaerial conditions reflect gb = 2gw and steeper slopes. In all cases the Poisson ratio is n = 1/3
and peak friction is fp = 0.5. (a) Results are for a range of slope angles in both environments; intermediate
values of the slip-weakening rate w and shear modulus m are used. The dashed lines show the scalings of
nucleation lengths in the “deep” and “shallow” limits for the bounding submarine cases. (b, c) Results are
for low and high slip-weakening rates w, respectively, each over a range of sediment stiffnesses.
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the weakened zone, the shear rupture may continue toward
instability.

Appendix A: Nucleation Lengths
for Broad-Curvature Pore Pressure Profiles
and the Corresponding Eigenvalue Problems

A1. Nucleation Lengths Much Smaller
Than Depth

[58] Following a similar procedure outlined in greater
detail by Uenishi and Rice [2003], we combine (12) with
(16–17), using q(x) = kx2/2:

fp � wd x; tð Þ� � to
fp

� Rt þ 1

2
kx2

	 

¼ to � m∗

2p

Z aþ tð Þ

a� tð Þ

∂d x; tð Þ=∂x
x� x

dx

ðA1Þ

We take a derivative with respect to time, noting that in the
derivative of the integral the terms evaluated at the boundary
vanish by the requirement of non-singular stresses at the
crack tip

� wV x; tð Þ to
fp

� Rt þ 1

2
kx2

	 

� R fp � wd x; tð Þ� �

¼ �m∗
2p

Z aþ tð Þ

a� tð Þ

∂V x; tð Þ=∂x
x� x

dx ðA2Þ

where V(x, t) is the slip velocity. We use a(t) = (a+ � a�)/
2, b(t) = (a+ + a�)/2, X = [x � b(t)]/a(t), and scale slip
velocity by its RMS value, V ¼ V x; tð Þ= ffiffiffi

2
p

Vrms tð Þ
� �

to
arrive at

� w

m∗
a tð ÞV x; tð Þ to

fp
� Rt þ 1

2
kx2

	 

� Ra tð Þ
m∗

ffiffiffi
2

p
Vrms

fp � wd x; tð Þ� �

¼ � 1

2p

Z þ1

�1

∂V s; tð Þ=∂s
X � s

ds ðA3Þ

For the quasi-static problem, Vrms(t) diverges at the onset of
the nucleation of dynamic rupture. Consequently, we can
neglect the second term in the above. After dropping explicit
mention of the time-dependence of variables and non-
dimensionalizing, we find at nucleation that the slip velocity
satisfies

1� T þ K
�aX þ �b
� �2

2

" #
�av Xð Þ ¼ 1

2p

Z þ1

�1

v′ sð Þ
X � s

ds ðA4Þ

The term in brackets is the normalized effective normal
stress s′(x, t)fp/to. In the limit that the normalized curvature
is very broad (K→ 0), the problem reduces to the eigenvalue
problem of Uenishi and Rice [2003] for which the critical
length ā(tc) approaches its shortest length at the smallest
eigenvalue lo ≈ 0.579, when the pore pressure increase is
minimally beyond that required to initiate sliding (i.e.,
T → 0). Similarly, Garagash and Germanovich (submitted
manuscript, 2012) reduce their fault injection problem to
such an eigenvalue problem to conveniently calculate criti-
cal conditions for variable pressurization scenarios.

A2. Nucleation Lengths Approaching and Exceeding
Depth

[59] Following the same steps that lead to (A4), except
here accounting for the free surface (i.e., now using (22), but
neglecting Ds as a negligible contribution) we arrive at a
similar eigenvalue problem

1� T þ Kh‘

2

aX þ b

hl

� �2
" #

a

‘
v Xð Þ

¼ 1

2p

Z 1

�1
v′ sð Þ 1

X � s
þ k1 a X � sð Þ½ �a

� �
ds ðA5Þ

When Khl → 0, the problem reduces to the same eigenvalue
problem as would result for the shear-stress loading scenario
considered by Uenishi and Rice [2003] had the fault in that
scenario lain parallel to the free surface and been driven to
slip over a region much longer than its depth. Returning to
the pore pressure scenario here and to the limit Kh‘ → 0 of
(A5), the lowest eigenvalue corresponds to the nucleation
length a tcð Þ=‘ for a given h/a(tc). In the broad curvature
limit, solution of the eigenvalue problem for variable h/a(tc)
reproduces remarkably closely the full numerical solution
(Figure A1), such that the critical length may be expressed as

a tcð Þffiffiffiffiffi
h‘

p ≈ lh;o Hð Þ ðA6Þ

where lh,o is the lowest eigenvalue of (A5) (after dividing by
H ≡

ffiffiffiffiffiffiffi
h=‘

p
). To highlight the limit of small h/a(tc), the

smallest eigenvalue in that limit is

a tcð Þffiffiffiffiffi
h‘

p ≈ lh;o H → 0ð Þ ≈ 2:2 ðA7Þ

[60] In the case of shear-stress loading, this nucleation
length is a tcð Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m∗h=W
p

≈ lh;o Hð Þ . The key result of the
deep-fault case of Uenishi and Rice [2003] is maintained:

Figure A1. Comparison of numerical solutions for crack
length at nucleation, a tcð Þ= ffiffiffiffiffi

h‘
p

with dimensionless depth
h=

ffiffiffiffiffi
h‘

p
of Figure 8a (solid line) against solutions to the

eigenvalue problem of (A5) in the limit of very broad pore
pressure increases, Khl → 0 (circles).
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namely that this nucleation length is independent of the
shape the elevated shear stress profile takes.

Appendix B: Solution by Collocation Method Using
Gauss-Chebyshev Quadrature

[61] Here we outline the numerical method used to solve
for crack lengths and slip distributions for given increases in
pore fluid pressure. We rely on methods commonly used in
fracture problems where the evaluation of the integrals
appearing in (16), (21), and (23) is approximated by Gauss-
Chebyshev quadrature [e.g., Erdogan and Gupta, 1972;
Erdogan et al., 1973]. We find that these direct numerical
solutions are favorable to a variational approximation [e.g.,
Rice and Uenishi, 2010], which, while a fairly accurate
approximation for broadly peaked profiles, break down as
the curvature increases (see Appendix C). Furthermore, this
means of numerical solution is preferred other over common
methods, such as approximating the slip distribution by
piecewise-continuous domains of constant slip [e.g., Rice
and Uenishi, 2010] or more involved quadratures such as
that of Gerasoulis and Srivastav [1981]. The advantage over
the former method is owed to the higher accuracy accom-
panying a higher order of convergence (second order versus
first), and the preference over the latter, in which both
accuracy and order are comparable, is owed to the relative
ease of implementation.
[62] Gauss-Chebyshev quadrature approximates an integral

Z 1

�1

F xð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dx ≈
p
n

Xn
j¼1

F xj
� � ðB1Þ

where xj ≡ cos[p(2j � 1)/(2n)]. When F(x) takes the form of
the singular kernel 1/(x� x), or some bounded kernal k(x� x),
the quadrature approximation holds at collocation points
x = xi ≡ cos(pi/n) where i = 1, 2,.., n � 1.

B1. Ruptures With No Residual Friction

[63] We use the above quadrature rule to simplify the
integral in (16). With a change of variable X = (x � b)/a,
where a = (a+ � a�)/2 and b = (a+ � a�)/2)Z aþ

a�

dd xð Þ=dx
x� x

dx ¼ 1

a

Z 1

�1

dd sð Þ=ds
X � s

ds ðB2Þ

We may reduce the latter integral to the form of (B1)
defining a function f(s)

dd sð Þ
ds

≡
f sð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2ð Þp ðB3Þ

such that

Z 1

�1

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p f sð Þ
Xi � s

ds ≈
p
n

Xn
j¼1

f sj
� �

Xi � sj
ðB4Þ

where Xi and sj are defined respectively as xi and xj are
defined above.

[64] Implicit in this quadrature is the approximation

f sð Þ ≈
Xp
m¼0

BmTm sð Þ ðB5Þ

where p < n and Tj(s) is the j-th Chebyshev polynomial of
the first kind. With f(sj) abbreviated fj, this may be
rewritten (with summation implied by repeated indices in
what follows)

fj ¼ CjmBm ðB6Þ

where Cjm = Tm(sj). Using (B3) and (B5), an approximate
expression for the slip at Xi (abbreviated di) is

di ≈
Z Xi

�1

BmTm sð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p ds ¼ arcsin Xið Þ þ p
2

h i
Bo þ sin k arccos Xið Þ½ �

k
Bk

¼ DimBm ðB7Þ

(k = 1, 2,.., p). Using (B5) and (B7),

di ¼ Sijfj ðB8Þ

where Sij = DimCjm
�1.

[65] (Alternatively, we may have taken the simpler
approximation

di ¼
Z 1

�1

f sð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p H Xi � sð Þds ≈ ~Sijfj ðB9Þ

where H(x) is the Heaviside step function and ~Sij is a strictly
upper triangular matrix of entries p/n. The advantage of Sij
over ~Sij is that, for cases where f(s) may be expressed as a
finite sum of Chebyshev polynomials and fj is provided
exactly, Sij will provide exact values of slip di. However, in
practical application the two yield close results since Sij and
~Sij differ only slightly.)
[66] As a result of the preceding, we may combine (16–17)

to arrive at the following integral equation (for ruptures far
from the free surface)

fp � wd xð Þ� �
s′o �Dp xð Þ½ � ¼ to � m∗

2p

Z aþ

a�

dd xð Þ=dx
x� x

dx ðB10Þ

which then may be considered at discrete points xi ≡ aXi + b
and reduced to the form

fp � wSijfj

� �
s′o �Dp aXi þ bð Þ½ � ¼ to � Kijfj ðB11Þ

where Kij = m∗/[2na(Xi � sj)]. For a given pore pressure
increase Dp(x), the index i provides a set of n � 1 equations
for n + 2 unknowns fj, a, and b. One additional condition is
that there is no net dislocation beyond the crack:

0 ¼
Z 1

�1

f sð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p ds ≈
p
n

Xn
j¼1

fj ðB12Þ

and the remaining two are the conditions that the stress
intensity factor at each crack tip is zero. From (B3) it is evi-
dent that the stress intensity factors at the left and right ends
are proportional to f(�1). As we seek solutions that have
nonsingular stresses, we require that f(�1) = 0. Using
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interpolation to approximately determine f(�1) from fj

[Krenk, 1975], we arrive at the following constraints on fj

0 ¼ f 1ð Þ ≈ 1

n

Xn
j¼1

sin p 2n� 1ð Þ 2j� 1ð Þ= 4nð Þ½ �
sin p 2j� 1ð Þ= 4nð Þ½ � fj ðB13Þ

0 ¼ f �1ð Þ ≈ 1

n

Xn
j¼1

sin p 2n� 1ð Þ 2j� 1ð Þ= 4nð Þ½ �
sin p 2j� 1ð Þ= 4nð Þ½ � fn�jþ1 ðB14Þ

For symmetric Dp(x), it can be anticipated that b = 0, and
only one stress intensity condition need be imposed.
[67] We may define n + 2 functions Fr where, from (B11),

Fi ≡ to � Kijfj � fp � wSijfj

� �
s′o �Dp aXi þ bð Þ½ � ðB15Þ

and Fn, Fn+1, and Fn+2 are simply the right hand sides of
(B12–B14). The arguments of the functions are taken as Yr
where Yj = fj, Yn+1 = a and Yn+2 = b and the Jacobian of Fr

may be expressed as

Jrs ¼ ∂Fr

∂Ys
ðB16Þ

For example, the entries Jrs over 1 ≤ r, s ≤ n are

∂Fi

∂fj
¼ �Kij þ wSij s′o �Dp aXi þ bð Þ½ � ðB17Þ

[68] We seek solutions to Fr = 0 and do so using the
Newton-Raphson method. Starting with an initial guess Yr

0,
we calculate the resulting Fr

0 and Jrs
0 and a corresponding

correction DYr
0 by solving

�F0
r ¼ J 0rsDY 0

s ðB18Þ

and updating Yr
1 = Yr

0 + DYr
0. This process is repeated until

an N-th increment for which max(|DYr
N|) is below a chosen

tolerance.
[69] To account for slip occurring near the free surface the

additional changes to shear and normal stress are included.
As a result, (B11) becomes

fp � wSijfj

� �
s′o �Dp aXi þ bð Þ �Mijfj

� � ¼ to � Kij þ Lij
� �

fj

ðB19Þ

where Lij = k1[a(Xi � sj)]m∗/(2n) and Mij = k2[a(Xi � sj)]m∗/
(2n) and in the Newton-Raphson scheme, Fi are changed
accordingly. While an increment in pore pressure may be
symmetric about the origin, due to the symmetry-breaking
effect of the free surface, rupture growth will be asymmetric
and b nonzero.

B2. Ruptures With Residual Friction

[70] For accurate results once residual friction is engaged
along the crack, the point in space at which friction transi-
tions from a linearly decreasing function to a residual value
must occur at a collocation point XD, providing an additional
constraint:

SDjfj ¼ dc ðB20Þ

where dc ≡ (1� fr/fp)fp/w. To add an corresponding unknown
variable, we free a parameter of the pore pressure profile to
vary. For the example of the load of type (12): at fixed load
curvature K we seek the magnitude of the increase T that
corresponds to the slip weakening distance occupying the
position (relative to the crack length) XD, taking advantage of
the monotonic relation apparent from solutions in which the
slip weakening position is freely determined. In terms of the
Newton-Raphson procedure, we introduce

Fnþ3 ≡ SDjfj � dc ðB21Þ

Ynþ3 ≡ T ðB22Þ

[71] In cases of symmetric rupture growth the position of
both slip weakening points will be at the collocation points
of � XD. However, for asymmetric ruptures, this method
suffers from the deficiency that only one slip weakening
position will be constrained by (B20), however the accuracy
is still considerably improved.

Appendix C: Approximate Solution by a
Variational Method

[72] Here we follow an energy approach similar to that
outlined by Rice and Uenishi [2010] to estimate the crack
length at which its growth rate becomes unbounded when far
from the surface. In doing so, we define a functional M of
slip d(x) (at a given instant in time—t-dependence sup-
pressed in below notation) that is Dt(x) = �M[d(x)] where
this functional is the integral term in (16), without the
additional kernel.
[73] Correspondingly, the functional of change in elastic

energy in the body due to slip d can be written as an integral
over the slipped region

s d xð Þ½ � ¼ 1

2

Z aþ

a�
M d xð Þ½ �d xð Þdx�

Z aþ

a�
to xð Þd xð Þdx ðC1Þ

The energy dissipated on the crack surface due to slip-
weakening friction is

F dð Þ ¼
Z d

0
t zð Þdz ðC2Þ

where the shear strength t(x) is given by (17).
[74] For a system with initial energy Uo, the total energy

after slipping is

U ¼ Uo þ s d xð Þ½ � þ
Z aþ

a�
F d xð Þ½ �dx ðC3Þ

and for a given pore pressure loading, the system will reach
equilibrium when DU = 0 for arbitrary variations in slip
(Dd) and crack length (Da).
[75] To reach an estimate of the crack length and slip at

which growth rate becomes unbounded, we will use an
assumed slip distribution that satisfies nonsingular crack tip
stresses. In nondimensional form (where �x ¼ x=‘ and �d ¼
dw=fp), one such slip distribution is �d �xð Þ ¼ D A2 � �x2ð Þ3=2=A3

with length A and slip parameter D, both of which will be
determined for a given loading profile shape and time.
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[76] Evaluating the assumed slip and pore pressure pro-
files within the energy equation, and defining �U ¼
U= to‘fp=w

� �
, we find

�U ¼ Uo

toLfp=w
þ 3p

32
D2 � 3p

8
DAþ 1� Tð Þ 3p

8
D� 16

35
D2

� �
A

þ 1

2
K

p
16

D� 16

315
D2

� �
A3 ðC4Þ

For a given load increase T and curvature K, determining A
and D by the simultaneous solution of ∂U/∂D = 0 and
∂U/∂A = 0 provides an approximate solution of the slip
profile. Figure C1 shows the good agreement between the
variational approximation and solutions arrived at using
the Gauss-Chebyshev quadrature of Appendix B if pore
pressure is only shallowly peaked.
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