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Abstract

Elastic reciprocity and geometric symmetry are used to constrain the ex-
pressions for stresses due to introduction of line dislocations near a half-space
surface. Specifically, a relationship is shown to exist between the changes in-
duced by dislocations of orthogonal Burgers vectors (normal and parallel to
the free surface). These results are used to address inconsistencies of solu-
tions in the literature.
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1. Background

There is currently a variance in the literature regarding the solution for
an edge dislocation near a free surface which has persisted for more than
40 years. With reference to Figure 1, the point of disagreement is whether,
at a point along the x axis, the change of the surface-normal stress σyy due
to the dislocation of Figure 1a is opposite or equal to the change of shear
stress σyx due to the dislocation of Figure 1b, for the same magnitude of
Burgers vector (displacement discontinuity) in both 1a and 1b. The original
solution of the dislocation problem by Head (1953), consistently with an in-
dependent solution by Dundurs and Sendecky (1965), indicated the relation
to be opposite (as drawn in Figure 1). However, among his influential body
of work on reducing crack and contact problems to singular integral equa-
tions and devising effective numerical solution techniques, one special case
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addressed by Erdogan (1969) required that same dislocation solution. His
result, repeated in Erdogan et al. (1973), can be seen to match the original
Head solution with the exception of a difference of sign in one term. That
difference indicates the relation discussed above to, instead, be equal.

This discrepancy became apparent when examining the stress intensity
factors for a uniformly pressurized subsurface crack, represented as a contin-
uous distribution of such dislocations. These factors were first numerically
calculated in the case of the equal relation by Erdogan (1969) and Erdo-
gan et al. (1973), and in that of the opposite relation by Ashbaugh (1975),
who first suggested the solution in Erdogan et al. (1973) required correc-
tion. Subsequently, Chen et al. (1980) also suggested the same correction,
and, in addition to Higashida and Kamada (1982), also calculated the inten-
sity factors in agreement with those of Ashbaugh (1975). It is the results
of Higashida and Kamada (1982) that feature ambiguously alongside and in
contrast with those of Erdogan et al. (1973) in a handbook of stress intensity
solutions (Murakami, 1987, p. 167).

However, there are indications that one of the solutions may be correct.
Examining the stress intensity factors, KI and KII , in the limit of a very shal-
low crack using a beam approximation, Dyskin et al. (2000) note agreement
with Higashida and Kamada (1982) over Erdogan et al. (1973). Additionally,
several other authors have presented consistent solutions (Thouless et al.,
1987; Yang and Li, 1997; the latter claim a misprint in the solution of Head,
1953, although we find no such misprint when comparing their solutions).
Additionally, work by Erdogan (1971) for a crack parallel to a bimaterial
interface between joined half-spaces indicates an opposite relation. Because
that configuration reduces, in the limit of zero stiffness for the uncracked half-
space, to the problem considered in 1969 and 1973, there is an inconsistency
among the set of papers. Further, Tada et al. (2000, p. 231) give a beam
theory asymptote for the mode I stress intensity factor that is different from
Dyskin et al. (2000) and seemingly in agreement with the results of Erdogan
et al. (1973). However, if we assume that beam theory adequately describes
energy transfer to the crack tip, hence implies K2

I +K2
II , that mode-I asymp-

tote requires that KII =
√

3KI , which deviates strongly from the trend in
mode II of Erdogan et al. (1973). Furthermore, Paynter et al. (2006), aware
of the sign mismatch leading to the dissimilar results, maintain that the so-
lution of Erdogan et al. (1973) is correct. The matter appears to some extent
unsettled and we aim here to conclusively address the discrepancy based not
on re-deriving specific proposed solutions but, rather, appealing to general
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Figure 1: Elements along the x-axis and at symmetric points about the y-axis indicate
stress (σxx omitted) due to an edge dislocation with Burgers vector a) parallel and b)
perpendicular to a free surface a distance h away. Standard positive conventions for
normal (in tension) and shear stresses are designated in a).
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considerations of elastic reciprocity and symmetry.

2. Elastic reciprocity

The Betti reciprocal theorem requires that for two elastic stress-displacement
fields σ

(1)
ı , u

(1)
k and σ

(2)
ı , u

(2)
k in the half space, corresponding to different distri-

butions of displacement discontinuity along a cut (e.g., to represent a crack)
coincident with a portion of the x axis (which is parallel to the free surface),
that ∫

S

(
nıσ

(1)
ı

)
u(2) dS =

∫
S

(
nıσ

(2)
ı

)
u(1) dS (1)

Here the origin of the y-axis is a distance h below the free surface, and
the closed contour S runs along y = 0± along the length of the cut. We
consider cases of balanced tractions along y = 0± so that, for ı = x, y,
σyı(x, 0

+) = σyı(x, 0
−) ≡ σyı(x) along that contour. Then, defining displace-

ment discontinuities δı(x) ≡ uı(x, 0
+) − uı(x, 0−) along the cut, reciprocity

requires ∫ ∞
−∞

[
σ(1)
yx (x)δ(2)x (x) + σ(1)

yy (x)δ(2)y (x)
]
dx =∫ ∞

−∞

[
σ(2)
yx (x)δ(1)x (x) + σ(2)

yy (x)δ(1)y (x)
]
dx (2)

(with the integrands vanishing here and below for positions x outside the
cut).

The stresses σyı(x) due to continuous distributions of dislocations of the
types in Figure 1a and b, with local densities −dδk(x)/dx over the domain
−∞ < x <∞, have the form

σyı(x) =
µ

2π(1− ν)

∫ ∞
−∞

[
1

t− x
dδı(t)

dt
+Kı(t− x)

dδ(t)

dt

]
dt (3)

While labeling the kernels as Kı(t − x) versus a notation Lı(x − t) is an
arbitrary and inconsequential choice, we have chosen to follow the implicit
preference of Erdogan (1969).
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Choosing δ
(2)
x (x) = 0, δ

(1)
y (x) = 0 and substituting the relations for stress∫ ∞

−∞

[∫ ∞
−∞

Kyx(t− x)
dδ

(1)
x (t)

dt
dt

]
δ(2)y (x)dx =

∫ ∞
−∞

[∫ ∞
−∞

Kxy(t− x)
dδ

(2)
y (t)

dt
dt

]
δ(1)x (x)dx (4)

Integrating the innermost integrals by parts, noting that the kernels must
vanish as |t − x| → ∞, and assuming that δ

(1)
x (t), δ

(2)
y (t) are bounded as

t→ ±∞, ∫ ∞
−∞

[∫ ∞
−∞

K ′yx(t− x)δ(1)x (t)dt

]
δ(2)y (x)dx =∫ ∞

−∞

[∫ ∞
−∞

K ′xy(t− x)δ(2)y (t)dt

]
δ(1)x (x)dx (5)

where K ′ı(θ) = dKı(θ)/dθ. Switching the symbols for the integration vari-
ables x and t on the left hand side and rearranging∫ ∞

−∞

∫ ∞
−∞

δ(1)x (x)δ(2)y (t)
[
K ′xy(t− x)−K ′yx(x− t)

]
dtdx = 0 (6)

That equation must be satisfied for an arbitrary choice of the functions
in the product δ

(1)
x (x)δ

(2)
y (t), requiring that

K ′xy(t− x) = K ′yx(x− t) (7)

Then noting thatK ′xy(θ)−K ′yx(−θ) = 0 is equivalent to d[Kxy(θ)+Kyx(−θ)]/dθ =
0, we conclude that

Kxy(t− x) = −Kyx(x− t) (8)

3. Symmetry

To further sharpen the constraint of Equation 8, consider the two cases

δ(1)x (x) = −bx
2

x

|x|
, δ(2)y (x) = −by

2

x

|x|
for |x| > 0 (9)

with δ
(1)
x (0) = δ

(2)
y (0) = 0, and with δ

(1)
y (x) = δ

(2)
x (x) = 0 for all x. These

describe a classical edge dislocation line running perpendicular to the x, y
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plane through its origin, i.e., along the z direction, with Burgers vector com-
ponents bx in case (1) and by in case (2). The stress field created in case (1)
is equivalent to that produced by insertion of a sliver of material of thickness
bx along the portion of the y, z plane corresponding to y > 0 (Figure 1a).
That created in case (2) is equivalent to that produced by insertion of a sliver
of thickness by along the portion of the x, z plane corresponding to x < 0
(Figure 1b).

The resulting stresses on y = 0 in the two cases are, by Equation 3,

σ(1)
yx (x) =

µbx
2π(1− ν)

[
1

x
−Kxx(−x)] , σ(1)

yy (x) = − µbx
2π(1− ν)

Kyx(−x) (10)

σ(2)
yx (x) = − µby

2π(1− ν)
Kxy(−x) , σ(2)

yy (x) =
µby

2π(1− ν)
[
1

x
−Kyy(−x)] (11)

Case (1) has mirror symmetry about the y, z plane, u
(1)
x (x, y) = −u(1)x (−x, y),

u
(1)
y (x, y) = u

(1)
y (−x, y), so that σ

(1)
yx (+x) = −σ(1)

yx (−x) and σ
(1)
yy (+x) =

σ
(1)
yy (−x), assuring that

Kxx(−x) = −Kxx(+x) and Kyx(−x) = Kyx(+x) (12)

Case (2) has pure antisymmetry about that y, z plane, requiring that u
(2)
x (x, y) =

u
(2)
x (−x, y), u

(2)
y (x, y) = −u(2)y (−x, y), so that σ

(2)
yx (+x) = σ

(2)
yx (−x) and

σ
(2)
yy (+x) = −σ(2)

yy (−x), assuring that

Kxy(−x) = Kxy(+x) and Kyy(+x) = −Kyy(−x) (13)

Thus both Kxy(t − x) and Kyx(t − x) are even functions of t − x and our
previous deduction that Kxy(t− x) = −Kyx(x− t) can be rewritten as

Kxy(t− x) = −Kyx(t− x) (14)

Reverting to the opening discussion, this result, based only on elastic
reciprocity and symmetry, clearly shows that the opposite alternative must
be the correct one. This result is not restricted to the coordinate choice of
Figure 1, as we show next.

4. Coordinate changes

Given Kı(θ) for a particular choice of coordinates x, y, the components
Kı̃̃(θ) may be determined for an alternative choice x̃, ỹ. Consider the coordi-
nates x̃ = −x, ỹ = −y (e.g., Erdogan, 1969; Erdogan et al., 1973; Figure 2),
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Figure 2: Elements along the x̃-axis and at symmetric points about the ỹ-axis indicate
stress (σx̃x̃ omitted) due to an edge dislocation with Burgers vector a) parallel and b)
perpendicular to a free surface a distance h away.
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for which the displacement discontinuities are δı̃(x̃) = u+ı̃ (x̃, 0+)− u−ı̃ (x̃, 0−)
for ı̃ = x̃, ỹ, and the stress components take the form

σỹı̃(x̃) =
µ

2π(1− ν)

∫ ∞
−∞

[
1

t̃− x̃
dδı̃(t̃ )

dt̃
+Kı̃̃(t̃− x̃)

dδ̃(t̃ )

dt̃

]
dt̃ (15)

We note that δx̃(−x) = δx(x) and δỹ(−x) = δy(x) and that σỹx̃(−x) = σyx(x),
and σỹỹ(−x) = σyy(x). Using these relations for displacement discontinuities
and stress components between the two coordinate systems, the coordinate
transformations themselves, and the anticipated even or odd nature of Kı̃̃(θ),
we may transform the expression for σỹı̃(x̃) as an integral over t̃ (Equation
15) to an expression for σyı(x) as an integral over t. Doing so and comparing
the resulting expression with Equation 3, we find the relation between the
nonsingular kernels: Kı(θ) = Kı̃̃(θ) for ı =  and Kı(θ) = −Kı̃̃(θ) for ı 6= .
(Here the notation is such that if ı = x, then ı̃ = x̃, etc.) That both Kxy(θ)
and Kyx(θ) transform into the new coordinate system with the same sign
preserves the conclusion of the previous section: Kx̃ỹ(θ) = −Kỹx̃(θ).

This indicates that the solution proposed in Erdogan (1969) and Erdogan
et al. (1973), in which Kx̃ỹ(θ) = Kỹx̃(θ), must require correction, presumably
due to an unnoticed sign error in transcription from notes or in derivation.
From the above analysis alone, it is not possible to determine which of the
two terms requires a sign change to arrive at Kx̃ỹ(θ) = −Kỹx̃(θ). However,
using a correct solution in another coordinate set (e.g., Head, 1953) and
the coordinate transformation above, the appropriate sign change may be
determined (see Appendix).

5. Acknowledgment

Our interest in clarifying ambiguities in the literature arose in studying
models for fractures running parallel to surfaces of half-spaces as they arise
in landslide and glacial mechanics, those studies being supported in the for-
mer application area by a Cooperative Research Agreement with Total E&P
Recherche Developpement under award number FR00003219, and in the lat-
ter by NSF Office of Polar Programs award ANT-0739444. We are grateful
to Victor C. Tsai for discussion.

8



Appendix A. Expressions for stress due to edge dislocations under
change of coordinates, Burgers vector convention

For the coordinates of Figure 1 and the positive Burgers vector convention
represented by cases (1) and (2) (e.g., as in Thouless et al., 1987), stresses
along y = 0 are

σ
(1)
yx (x) + σ

(2)
yx (x)

µ/ [2π(1− ν)]
= bx

[
1

x
− x

4h2 + x2
+

8h2x

(4h2 + x2)2
+

4h2x3 − 48h4x

(4h2 + x2)3

]
+

by

[
24h3x2 − 32h5

(4h2 + x2)3

]
(A.1)

σ
(2)
yy (x) + σ

(1)
yy (x)

µ/ [2π(1− ν)]
= by

[
1

x
− x

4h2 + x2
− 8h2x

(4h2 + x2)2
+

4h2x3 − 48h4x

(4h2 + x2)3

]
+

bx

[
−24h3x2 − 32h5

(4h2 + x2)3

]
(A.2)

Comparing the above to eqs. (10–11), the components Kı(θ) are

Kxx(θ) = − θ

4h2 + θ2
+

8h2θ

(4h2 + θ2)2
+

4h2θ3 − 48h4θ

(4h2 + θ2)3

Kxy(θ) = −24h3θ2 − 32h5

(4h2 + θ2)3

Kyy(θ) = − θ

4h2 + θ2
− 8h2θ

(4h2 + θ2)2
+

4h2θ3 − 48h4θ

(4h2 + θ2)3

Kyx(θ) =
24h3θ2 − 32h5

(4h2 + θ2)3
(A.3)

The solution for the coordinates x̃, ỹ of the Erdogan 1969 and 1973 pa-
pers is then correctly given, using the transformation Kx̃ỹ(θ) = −Kxy(θ),
Kỹx̃(θ) = −Kyx(θ), and Kx̃x̃(θ) = Kxx(θ), Kỹỹ(θ) = Kyy(θ), as

Kx̃ỹ(θ) = −Kỹx̃(θ) =
24h3θ2 − 32h5

(4h2 + θ2)3
(A.4)

with on-diagonal Kı̃̃(θ) as above, whereas previously Erdogan (1969) stated

Kx̃ỹ(θ) = Kỹx̃(θ) = (24h3θ2 − 32h5)/ (4h2 + θ2)
3
. Erdogan (1971), using

the same coordinates, is in agreement with these Kı̃̃(θ) provided the sign is

9



changed for each of his kernel terms. That is appropriate for Kx̃x̃ and Kỹỹ

because he reversed the sign convention for these terms in the 1971 paper,
but not for Kx̃ỹ and Kỹx̃. If we speculate that such was a misprint and that
he intended to reverse the sign convention for the off-diagonal terms too,
then results of his 1971 paper would be fully verified.
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