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Stable and unstable development of an interfacial sliding instability
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Examining a nonlinear instability of sliding rate on a frictional interface of elastic bodies, we investigate whether

laboratory-constrained frictional relations suggest universal scaling under even the simplest of configurations.
We find blowup solutions by solving an equivalent, classical problem in fracture mechanics. The solutions are
fixed points of a dynamical system and we show that their stability is lost by a cascade of Hopf bifurcations as a
single problem parameter is increased, leading to chaotic dynamics.
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The interest in understanding interfacial friction and its
role in stick-slip sequences stems from problems ranging from
sliding of an object on a surface [1] to the seismic cycle of
tectonic faults [2,3]. The elasticity of these bodies in contact
permits differential slip along the interface. With sufficient
compliance, stick-slip behavior may emerge as the result of
the nucleation, fast propagation, and arrest of a shear rupture
on the interface. Laboratory observations of sliding friction
show a dependence on slip rate and its history, or state, and
form the basis of a phenomenological model of friction [4,5].
When the steady-state dependence is rate weakening, slip
instabilities, characterized by a diverging slip rate, may emerge
at the interface between elastic bodies [6,7]. This divergence is
limited by the bodies’ inertia and these instabilities are thought,
for example, to nucleate the fast rupture transition from stick
to slip, including earthquake-generating dynamic rupture on
geologic faults [8].

How does elasticity of the bodies couple with friction at
the interface to generate the local instability that nucleates
the rupture transition? Here, we examine how an instability
develops under a model for sliding friction for a wide range
of material interfaces. Focusing on the nonlinear stages of the
instability, we find that its development is in common with an
array of seemingly disparate finite-time instabilities [9]. These
include problems of reaction-diffusion [10], fluid dynam-
ics [11,12], and aggregation [13,14]. Such instabilities show
universal scaling, in which quantities diverge or shrink with
a characteristic scaling in time and self-similar distribution
in space that are both independent of the external forcing
or initial conditions that provoke the instability. Features of
the frictional instability here are (i) a transition by which
this universal behavior may be lost and replaced instead by
an instability development that is, on the contrary, extremely
sensitive to initial conditions and the manner of forcing and
(ii) that such an instability arises in linearly elastic systems,
in which nonlinearity is introduced only in the frictional
description.

A point of interest in model representations of the seismic
cycle of rupture, arrest, and re-rupture has been whether spa-
tiotemporal complexity may emerge in the stick-slip sequence
purely from the coupling of elasticity with friction [2,3,15].
Here, we focus on the stage of the cycle in which instability
develops quasistatically, before the slip rate’s local divergence
is limited by inertia and dynamic rupture is nucleated. Prior
examinations of frictional instabilities have indicated that
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both universal or more complex behavior may be possible
at this stage [16—18], however, a coherent description of the
asymptotic development of the nonlinear instability is lacking.
Such a description is desirable to understand the behavior
leading to earthquake initiation and its contribution to cycle
complexity: Is there a universal scaling to or more chaotic
behavior of the preseismic acceleration of a fault towards
dynamic rupture?

The coefficient of friction on an interface is presumed to
depend on a state variable 6 and the instantaneous sliding rate
V [4,5]. A representation of 6 may be a weighted average
of the recent history of slip rate or its inverse (slowness);
presuming memory fades over an amount of slip D. (e.g.,
determined by a characteristic length scale of the interface,
such as asperity size), one possible definition of 6 is an
exponentially decaying weighting of the slowness, which
implies its evolution follows [5]
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This form of the state variable and its evolution is commonly
referred to as the aging law, as at stationary contact, 6 increases
proportionally with contact time.
A proposed expression [5] for the friction coefficient f
depending on 6 and the instantaneous slip rate V that is
consistent with experimental observations is

f=/fi+an(V/V)+bIn(Vif/D.), 2

where f; and V; are reference values of friction coefficient and
sliding rate. The dimensionless coefficients a and b determine
the magnitude of the direct and evolutionary responses to
changes in slip rate implied in the terms that the coefficients
precede. While the direct effect is physically motivated in
terms of a creep process acting at asperity contacts, the
apparent evolution effect is empirical [7]. When a < b, rate-
weakening behavior is possible, and an interface sliding at a
uniform rate is unstable to small perturbations [6,7]. We look
beyond these initial stages of linear stability to understand the
nonlinear development in the asymptotic limit of diverging
slip rate.

For a frictional interface, the shear strength 7y = o f, where
o is the surface-normal stress. The shear stress on the interface
may be expressed as T = 1, + |, Where 1, is the shear stress
that would be resolved on the interface if it were locked (e.g.,
due to an external loading) and . is the shear stress change due
to a distribution of interfacial slip §. For quasistatic sliding, we
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may generally write 7y = £(§), where L is a functional whose
form depends on the mode of slip and the elastic configuration
(e.g., two half spaces in contact, or a layer sliding above a
substrate) and operates on the instantaneous distribution of
slip and not its history. The interaction due to £ may be local
or nonlocal. £ has the properties that dt,;/dt = L£(V) and that
Llg(t)h(x)] = g(¢t)L[h(x)]. When and where sliding on the
interface occurs, T = t;. Consequently,
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Using a change of variables we look for solutions that
correspond to a sliding instability, in which slip rate diverges
in finite time. We transform ¢ to a new variable s with the
relation ds/dt = 1/t;(t), where t;(t) =, —t is the time
from instability: As t — f;,, s — 00. In place of considering
V, we consider the variable W defined implicitly by V (x,) =
WIx,s()]D./ts(t). Lastly, in place of 6, we consider the
variable ®[x,s(¢)] = 1 — D./[V(x,1)0(x,t)], which provides
information on the proximity to steady-state sliding, occurring
when © = 0. The first two changes are suggested by scaling
considerations [19], the last by our choice of the state evolution
law. Understanding the behavior of W and @ in the limit
s — oo informs on the manner of instability development.
The change leads to the new pair of evolution equations

Iw b, b,
—— = W=L(W)+ W —W,
a a

+ L(V). 3)
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with the nondimensional operator £ = (D,./ob)L. There is
a single problem parameter, a/b, limited to 0 < a/b < 1 for
rate-weakening behavior. In arriving to (4), we acknowledged
that 7, is negligible in (3) if slip rate diverges, leading to
autonomous evolution equations for V and 6 (and, similarly,
W and ®).

Fixed points of the dynamical system (4) are W = W(x),
@ = P(x), which correspond to a slip rate diverging with
a fixed distribution and proximity to steady-state sliding.
From (4), we find that fixed points satisfy

a\ , 1-w, W<,
<I—Z>+E(W)= {o, W1 (5)

where W is compact and vanishes on its boundary and with
P =1where W < 1and P = 1/W where W > 1. These last
conditions on P follow from (4) and given that ® < 1 by
definition. Remarkably, the problem (5) of solving for W is
equivalent to a form of the classical cohesive crack problem in
fracture mechanics [20,21]: solving for the slip distribution of
a crack whose strength weakens linearly from a peak strength
7, to a residual level 7, over a characteristic slip 8. and is in
equilibrium with a uniform background stress t;, or

- - r‘S 567 5<80
T +£(8) — {:P (Tp T ) / s 2 5 (6)

The similarity between (5) and (6) implies that the stress
changes and slip increments during an instability developing
in the manner of the fixed point resemble the distributions of
stress and slip of a slip-weakening fracture.
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Whether these fixed points are attractive and asymptotically
stable is determined by a linear stability analysis. We examine
the evolution of small perturbations from the fixed point in
the form ®(x,s) = P(x) + €p(x) exp(rs), W(x,s) = W(x) +
ew(x)exp(As). Following substitution in (4) and keeping
terms of O(e), we arrive at an eigenvalue problem for
eigenvalues A and eigenmodes w and ¢ (see the Appendix).
Two eigenvalues and eigenmodes may be anticipated and
correspond to translational symmetry in space and time [22],
respectively, A =0, A = 1. The real part of the remaining
eigenvalues determines the fixed-point stability.

We apply these results to a particular elastic configuration
and modes of quasistatic slip: in-plane (mode-II) or antiplane
(mode-III) slip between two elastic half spaces. Here, x is the
single spatial dimension x along which variations occur, and
the operator L takes the form [23]

w / L av/ax’

LV)=— /
L. X —X

dx’, 7
o x (N

where L, and L_ are the end points of the slipping area,
and the effective shear modulus u’ is the shear modulus y in
mode Il and i /(1 — v) in mode II, with Poisson ratio v. When
solving for W, the problem symmetry implies L, = L_ = L.
The length L, = p' D, /(o b) emerges as a characteristic length
scale for spatial variations.

Elasticity provides interactions between points on the slid-
ing surface, which may range between the nonlocal interaction
implied by (7) to a local interaction in which L is a derivative.
In the Supplemental Material [24] we consider slip on a surface
near a boundary and show that the nonlocal interaction (7)
transitions to a local one as a parameter comparing the distance
to the free boundary 4 to the length scale L, is reduced. We
find that the results to follow for the particular configuration
embodied by (7) are generally independent of the range of
interaction.

We numerically solve the problem of finding the fixed
points satisfying (5) with (7), i.e., finding W [Fig. 1(a)], L
[Fig. 1(b)], and, implicitly, P as a/b is varied. We retrieve
end-member scalings for L: L = (1.3774...)L, for 0 <
a/b < (0.3781..)and L = L,/[n(1 —a/b)*] as a/b — 1.
These scalings were first suggested by prior analysis and
numerical solutions [17]: The value of L for the small
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FIG. 1. For in-plane or antiplane slip between elastic half spaces,
fixed points of (4) correspond to a diverging slip rate with spatial
distribution W (a) of half length L (b), which depend on the problem
parameter a/b. Dashed lines show asymptotic behavior (see text).
Progressively dark curves in (a) correspond to solutions for a/b of
0.3781...,0.5,0.6, ...,0.9.
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values of a/b was found when looking for separable blowup
solutions limited to ® = 1 within |x| < L, and the latter was
inferred using a small-scale-yielding argument based on results
of numerical solutions of the original system of evolution
equations resulting from (1) and (2) with (3). Here, we retrieve
the former scaling as a special case and find a stronger
argument for the latter scaling owing to the equivalence of the
problem of finding W, P to solving a classical fracture problem
in which a small-scale-yielding analysis is appropriate in the
limit a/b — 1. In this limit, VW converges to the elliptic
solution W(x) = /1 — (x/L)*/[(1 — a/b)m /2].

To perform the linear stability analysis of the fixed points
for this configuration for a given value of a/b, we numerically
solve the associated eigenvalue problem. We find that fixed
points are asymptotically stable for 0 < a/b < (0.3781...),
i.e., eigenvalues not associated with translational symmetries
have negative real parts. Asymptotic stability is first lost
as a/b is increased beyond this range by an eigenvalue
translating along the real axis and whose eigenmode is an
odd function. As a/b is increased further, subsequent modes
become unstable through an apparently infinite succession of
Hopf bifurcations as a/b — 1. Figure 2 shows the trajectory
of the complex eigenvalues of the first six modes to undergo a
Hopf bifurcation.

The cascade of Hopf bifurcations implies the slip instability
develops chaotically beyond a threshold value of a/b. For a
system whose fixed point first loses stability by a supercritical
Hopf bifurcation, the asymptotic behavior is a limit cycle.
A second Hopf bifurcation would imply oscillations with an
additional frequency leading to a limit torus; incommensurate
frequencies result in quasiperiodic behavior. The continued
sequence would suggest an accumulation of unstable modes
and mirrors a proposed route to turbulent, chaotic fluid
flow [25,26], in which such a cascade occurs as viscosity
n — 0. However, many unstable modes may be unnecessary
for chaotic behavior since prior work [27,28] indicates that,
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FIG. 2. Eigenvalue trajectories as a/b is increased. The first six
Hopf-bifurcating eigenvalues to cross the imaginary axis are shown
(order indicated). Solid and dashed lines indicate the corresponding
eigenmode is even and odd, respectively. Red and black circles
indicate eigenvalue positions whena /b = 0.65 and 0.75, respectively.
The final position of each trajectory corresponds to a value of a/b
of 0.92 for the left branch of innermost trajectory, and 0.98 for all
others.
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following a third Hopf bifurcation, the expected quasiperiodic
limit torus is not stable to perturbations and may be replaced
by a strange attractor.

The dramatic loss of fixed-point stability as a/b — 1
follows the approach of the fixed-point behavior towards
steady-state slip. In this limit, P — 0 nearly everywhere on
|x| < L, except within a boundary layer near |x| = L whose
length is comparable to L,: The behavior in this limit is
one of diverging velocity under steady-state sliding. Uniform,
steady-state sliding is known to be unstable perturbations with
a wavelength exceeding A, ~ L,/(1 —a/b) [6,7]. Here, L
exceeds A, for a/b near 1 since L ~ L;,/(1 — a/b)>.

To compare against the fixed-point stability analysis, we
find numerical solutions to the evolution equations for slip
rate and state, (1) and (2) with (3) and (7), and examine
the asymptotic development of a slip instability. The slipping
region is the entire real line, i.e., L+ — 400 in (7). Initially,
the surface uniformly slides at steady state. A perturbation is
applied at = 0 and induces an instability. The perturbation is
a slowly increasing external forcing 7,, spatially compact and
symmetric. With symmetry imposed, the loss of fixed-point
stability occurs only through a series of Hopf bifurcations
and the fixed points are asymptotically stable up to a/b =
0.74, where the first even-mode Hopf bifurcation occurs.
We examine a case where the problem parameter a/b = 0.7
(Fig. 3). While sliding occurs along the real line, we find that
the blowup of slip rate asymptotes to the compact distribution
of the fixed-point solution.

We show the changing character in the instability devel-
opment as a/b increases past the sequence of even-mode
Hopf bifurcation thresholds (Fig. 4). We use slip at a point
as a proxy for the independent variable s: For a slip rate
that diverges in the manner of the fixed points, the two
are linearly related. Following the first Hopf bifurcation,
asymptotic convergence is replaced by a finite-amplitude
limit cycle, which in turn gives way following the second
Hopf bifurcation (at a/b ~ 0.79) to aperiodic oscillations
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FIG. 3. Numerical solution (grayscale lines) for slip rate and state
evolution for a/b = 0.7 for a surface perturbed from steady state
showing snapshots in time of the spatial distributions along the surface
dimension x of (a) scaled, diverging slip rate and (b) the distance from
steady-state slip ®. Increasing grayscale corresponds to increasing
progression of instability. Distance x is scaled by the value of L
that corresponds to a/b = 0.7 for comparison with the fixed point.
Solution shows expected asymptotic convergence towards fixed-point
distributions W(x)/W(0) and P(x) (red dashed lines).
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FIG. 4. Four numerical solutions to slip rate and state evolution equations for a surface perturbed from steady state for select values of the
problem parameter a/b: (a) 0.7, (b) 0.75, (c) 0.8, and (d) 0.9. Hopf bifurcations occur at values of a/b between those of the solutions presented
here (see text). The history of one solution variable ® at a single point on the surface with slip at the same point is shown for each value of
a/b. As a/b is increased, we find asymptotic convergence in the case of (a) is replaced by a limit cycle following the first Hopf bifurcation in
(b) and nearly quasiperiodic behavior with two dominant frequencies following the second Hopf bifurcation in (c), in turn followed by aperiodic
behavior in (d) after the third Hopf bifurcation. The corresponding fixed-point value of ® at each value of a /b is indicated by a red dashed line.

with similar amplitude and two dominant, incommensurate
frequencies showing nearly quasiperiodic behavior. After the
third Hopf bifurcation (occurring at a/b ~ 0.87), there are
three unstable eigenmodes. The eigenvalue of one of these
modes loses its imaginary partata/b ~ 0.86 after the complex
conjugate eigenvalue pair coalesces on the real line and follows
opposing trajectories (Fig. 3). Notwithstanding, the resulting
development of the instability is noticeably aperiodic.

The material parameter a /b leading to chaotic behavior here
is distinct from a parameter derived from external forcing. An
example of the latter is the transition to a chaotic drip sequence
with an increase of a faucet’s fluid flow [29-31]. The former
implies chaotic behavior is inherent to the system, independent
of the manner of external forcing or its strength, provided only
the forcing is sufficient to provoke instability.

In seismic cycle models with rate- and state-dependent
friction, spatiotemporal complexity is often notably absent
and seismic cycles are periodic. However, frequently in these
models, a/b < 0.8, where we find slip instability (and hence,
earthquake nucleation) does not develop chaotically but in
a universal manner consistent with the observed periodicity.
The exploration of a potentially relevant and interesting range
of parameter space may be limited owing to computational
considerations (due to the disparity of lengths L and L,),
however, sensitive dependence of instability development on
preinstability conditions may lead to marked differences in the
nucleation phase from one event to the next and not the erased
memory of ad hoc initial conditions frequently seen.

Experimental observations of interfacial rupture via
changes in contact area or photographically observed defor-
mation provide insight into the spatiotemporal evolution of
unstable interfacial slip. This includes dynamic rupture events
and their arrest [1,32—34], and the quasistatic nucleation phase
preceding dynamic rupture [35,36]. In part aiming to reproduce
the latter experimental observations, numerical solutions of the
evolution equations for slip rate and state for the friction law
considered here show that the nucleation of dynamic rupture is
preceded by a quasistatic, cracklike propagation of accelerat-
ing slip rate [17,37]. The results here provide an interpretation

of such cracklike growth as the attraction of the slip rate
towards the fixed point: The propagation of these cracklike
events occurs towards lengths consistent with the values of
L found here, and the cracklike slip-rate profiles resemble a
fundamental mode of w from the linear stability analysis.

The results provide several testable predictions amenable
to the above experiments. The foremost is the possibility of
confirming the universal scaling of the acceleration of slip
towards the nucleation of a dynamic rupture, i.e., a scaling
independent of the forcing or initial conditions. Comparing the
slip rate to its acceleration, the fixed-point solutions suggest
that, asymptotically, V/(0V /0t) = t;. Experimentally, this
requires a high-frequency measurement of displacement rate
at a point on the interface where an instability emerges. A
distribution of such measurements or a proxy for the extent
of slip (e.g., such as the evolution of contact area) may also
reveal whether the instability is attracted to develop over a
characteristic length L and distribution W. Prior experimental
studies [1,32-36,38] have made such measurements. However,
either the scaling of sliding rate divergence was not a consid-
eration; during the quasistatic acceleration the sampling rate
was insufficient to discriminate a scaling; or the focus of mea-
surement was on rupture events on the scales much larger than
the nucleating instability. Furthermore, whereas observations
on the larger scale are well represented by a shear rupture with
small-scale yielding [33,34,39], in which details of frictional
evolution are implicitly neglected, the results here suggest that
examination of the nucleating instability may serve as a better
diagnostic of the manner of frictional evolution.

To aid such diagnostic comparisons, there are several
indications the asymptotic analysis pursued here may be
fruitfully applied to understand instability development un-
der other evolution laws for state 6 as well as altogether
different formulations for the rate and state dependence of
friction. We highlight in the Supplemental Material [24]
another experimentally motivated state evolution law [40,41]
that also admits self-similar blowup solutions whose forms
are analogous to those determined by (5). These solu-
tions are consistent with numerical solutions to evolution
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equations [42,43]. Furthermore, a preliminary examina-
tion of nonlinear instability development in numerical so-
lutions [44] of a recently proposed frictional descrip-
tion [45] shows indications for its occurrence as fixed-point
attraction [24].

R.C.V. acknowledges support from the National Science
Foundation (Grant No. EAR-1344993), and is grateful to the
Equipe Tectonique et Mécanique de la Lithosphére at the
Institut de Physique du Globe de Paris for their hospitality,
and to Shmuel M. Rubinstein for providing comments on a
draft of the manuscript.

APPENDIX

Linear stability analysis. To determine the linear stability
of the fixed points, we examined the evolution of perturbations
to the fixed points of the form

W(x,s) = W(x) + en(x)e™,
D(x,5) = P(x) + ep(x)e™.

Substituting the above into the dynamical system (4), we arrive
at an eigenvalue problem of the form

ro = Alw,d),
rp = B(w,9),
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for which the eigenmodes w(x) and ¢(x) and eigenvalues A are
to be solved. The functional operators A and B are linear in
their arguments,

Alw,$) = SW[wP + L)+ gw%b,
B(w,p) = —¢[1 — WP]

+[1 - P][gﬁ(a)) + <§ ~ 1)@79 - qu)].

Given the operator £, which depends on the elastic configu-
ration, the functions ¥V and P are provided by solution of the
fixed-point equation (5). We recall that V¥V and P depend on
a/b.

When L is given by (7), the operator is discretized assuming
w is piecewise constant over regular intervals within |x| <
L. W, P, and ¢ are likewise discretized at those intervals.
The eigenvalue problem reduces to one of a linear matrix.
Numerically solving this problem for various values of a/b,
we find that the trajectories of the complex eigenvalues yield an
apparently infinite sequence of Hopf bifurcations asa/b — 1.
In Fig. 3 we show the trajectories of the first six modes to
bifurcation. The sequence of values of a/b at which these first
six bifurcations occur are approximately 0.72,0.74,0.79, 0.84,
0.87, and 0.91.
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