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1. Methods for numerical solution for slip rate and state evolution
Here we outline the techniques used to numerically solve for the evolution of the state variable
and slip rate on a fault for given initial and boundary conditions. We slightly reformulate the
problem: first, the variables to be solved for and, second, the independent variable over which the
solution is said to evolve. The evolution of slip rate and state is coupled not only in the sense that
the slip rate affects the state evolution and vice-versa at a single point on the fault, but also in the
sense that points in space are coupled via the elastic response of the surrounding medium. How
this elastic interaction is best evaluated numerically varies according to the form that interaction
takes. We focus in the subsequent sub-sections on the methods used to evaluate this term for the
configurations considered in the main text.

We replace θ by Θ= ln(Viθ/Dc), such that (2.1) becomes f = fo + a ln(V/Vi) +Θ, and the
aging law, (2.3), becomes

∂Θ(x, t)

∂t
=
Vi
Dc

[
exp [−Θ(x, t)]− V (x, t)

Vi

]
(1.1)

Requiring σ∂f/∂t= ∂τ/∂t is then equivalent to

a
∂V (x, t)/∂t

V (x, t)
+ b

∂Θ(x, t)

∂t
=

1

σ

[
∂τel(x, t)

∂t
+
∂τo(x, t)

∂t

]
(1.2)

Using (1.1) and (1.2), we may write the rate of V explicitly in terms of V and Θ, and a non-
autonomous forcing term (∂τo/∂t). This, along with (1.1), forms the system of equations that may
be solved at positions along the fault. The natural scaling here is to scale stress by σb, slip velocity
by Vi, and time by Dc/Vi, leaving the sole parameter a/b.

We discretize V and Θ at positions xn (n=−N,−N + 1, ..., N ) along the fault and denote
their values as Vn(t) and Θn(t). We may then arrive to expressions for dVn/dt and dΘn/dt that
are likewise functions of Vn,Θn, and the value of ∂τo/∂t at xn, as well as the discrete distribution
of V along the fault necessary to numerically evaluate the contribution of ∂τel/∂t there as well.
In the demonstrative simulations done here, we take the fault to initially be at steady state (Φ= 0)
with a uniform sliding velocity Vi. We nucleate the slip instability by imposing a compact rate of
external loading ∂τo/∂t, held constant in time beginning at t= 0+ with the spatial distribution

∂τo(x, t)

∂t
=

σb

Dc/Vi

[
1−

(
x

Lτ

)2
]3/2

(1.3)

for |x| ≤Lτ and 0 otherwise, where Lτ is the half-width of the loaded region and the specific
values chosen given in the caption of Figures with simulation results (for the slip between elastic
half-spaces, this has form Lτ =Lb/(1− a/b) or Lb/(1− a/b)2).

Here, we expect the velocity to diverge as a finite time instability, implying that to resolve
a given increment in velocity requires progressively smaller time increments as tf → 0. To
circumvent this, we change the independent variable of Vn and Θn from time to the slip at the
origin, δ0 = δ(0, t). The convenience in doing so is that, for a coordinate system oriented such
that the slip instability develops about the origin (as is done here) and for a strictly positive slip
rate that ultimately diverges in the manner of (3.4), δ0 will have a monotonic relation with t

that itself ultimately diverges (logarithmically) while tf → 0 (such that logarithmic increments of
V occur over approximately fixed increments of δ0). Using the notation (·)n,δ0(δ0) = (·)n[t(δ0)],
the change of variable implies that dVn,δ0/dδ0 = (dVn/dt)(dt/dδ0) (and likewise for dΘn,δ0/dδ0),
with dt(δ0)/dδ0 = 1/V [0, t(δ0)]. Thus it is the evolution of the pair Vn,δ0 and Θn,δ0 that we solve
for at each discrete point by integrating the resulting system ODEs forward in δ0, as well as
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solving for t(δ0), defining δ0 = 0 such that t(0) = 0. We perform this method-of-lines integration
using the adaptive-step integration routine ode113 in MATLAB.

In solving for the evolution of V and Θ, we must numerically evaluate the operator L
associated with ∂τel/∂t at each step. We recall that the form that that operator takes depends on
the mode of slip (e.g., in- or anti-plane, or mixed-mode slip) as well as the elastic configuration of
the surrounding medium (e.g., material heterogeneities, including the presence of a free surface).
In what follows we examine the two procedures used to arrive at results presented in the main
text for the various configurations considered.

(a) Fourier-transform approach for in- or anti-plane rupture
Here we outline a commonly employed spectral method that makes use of the Fourier transform
[e.g., King, 2009] properties of the operator L. We use this technique in finding the solutions
presented in Figures 6 and 9. While the method is expedient, it is disadvantageous for precise
comparisons with the fixed-point solutions. In the subsequent sub-section, we outline the
implementation of an alternative method to alleviate this deficiency.

For single-mode slip at the interface of two elastic half-spaces, ∂τel/∂t is

L(V ) =
µ̄

2π

∫∞
−∞

∂V/∂s

s− x ds (1.4)

We evaluate the above by evaluating its Fourier transform, which we denote by the operator
F [f(x)] when operating on a function f(x), followed by its inverse, F−1; the transform implicitly
returns a function of the wavenumber k. We use the properties of the Fourier transform of
convolution and derivatives (here, the spatial derivative of V ) to concisely write F(L) as

F
[
∂τel(x, t)

∂t

]
=−µ′ikF [V (x, t)]F [1/x] (1.5)

where F [1/x] =−πi sgn(kw).

Thus, after finding the Fourier transform of a distribution of V at a fixed time, (1.5) can be
calculated, and taking its inverse Fourier transform provides the concomitant elastic stressing
rate. Numerically, the transform of V and the inverse of (1.5) may be efficiently calculated using
fast Fourier transform techniques for V defined as a periodic function on an interval with period
2Lp and defined on an evenly spaced grid of 2N − 1 points, xn =−Lp, −Lp +∆x, ..., Lp −∆x.

The periodicity imposed on V introduces an artifact from the elastic interactions among the
periodic array when the elasticity is non-local, like for slip between elastic half-spaces. This
artifact would diminish when Lp is taken to be increasingly greater than an expected lengthscale
for velocity development, here L. The order of the rate of this decrease can be estimated by
the decay of the stress rate with distance from the developing slip instability, which for in- or
anti-plane rupture would occur as the squared inverse of distance from the instability patch. We
typically choose Lp such that (L/Lp)2 < 1% for the numerical solutions where this method is
implemented.

For slip of a layer of thickness h on an elastically similar substrate, ∂τel/∂t is

L(V ) = Ēh
∂2V

∂x2
(1.6)

This may also be evaluated by the Fourier transform technique above, and we do so out of
convenience in arriving to the solutions in Figure 9. Given the local nature of the interactions
embodied by (1.6), these solutions do not suffer from the implicit replication of the domain.
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However, a more typical route to numerically evaluating (1.6) would be to use traditional schemes
for differential operators (e.g., finite differences) acting over a finite or periodic domain.

(b) Weideman eigenfunction expansion for in- or anti-plane rupture
between two half-spaces

As noted above, a deficiency of the Fourier transform approach is the implicit periodic replication
of a finite domain. If we are to precisely compare the evolution of a single slip instability (and not
a periodic array of them) to the fixed-point solutions of the main text, we require a numerical
method that can track evolution of slip rate and state on the entire fault. This is necessary for
an independent and accurate evaluation of the asymptotic stability of the fixed points. For the
problem of in- or anti-plane rupture of two half-spaces, this requires the Hilbert transform and
spatial derivatives to be evaluated numerically on the entire real line.

To accomplish this, we look towards a set of functions that form a complete orthonormal basis
on the real line [Higgins, 1977; Wiener, 1949],

ρn(x) =
(1 + ix)n

(1− ix)n+1
n= 0, ±1, ±2, ...

whose inner product ∫∞
−∞

ρn(x)ρm(x)dx= πδKn,m

where the overline denotes the complex conjugate, and δKn,m is the Kronecker delta (δKn,m = 1

when n=m, otherwise δKn,m = 0).

This choice of this basis set is motivated by the results of Christov [1982], James and Weideman
[1992], and Weideman [1992, 1995] who found an efficient manner for the numerical evaluation of
the Hilbert transform and spatial derivatives on the real line and whose key developments we
summarize below.

We can represent a real-valued function defined on the real line, f(x), as

f(x) =

∞∑
n=−∞

anρn(x) (1.7)

where the coefficients

an =
1

π

∫∞
−∞

f(x)ρn(x)dx (1.8)

One advantage of using this basis is that ρn are eigenfunctions of the Hilbert transform H
[Weideman, 1995]

H[ρn(x)] =
1

π

∫∞
∞

ρn(s)

s− x ds= λnρn(x) (1.9)

with the eigenvalues λn =−isgn(n), where sgn(n) = n/|n| for n 6= 0 and sgn(0) = 1.

Using the coordinate map

eiθ =
1 + ix

1− ix , x= tan
θ

2
(1.10)

(1.7) can be rewritten as

f(x)(1− ix) =

∞∑
n=−∞

ane
inθ

and (1.8) may be reexpressed as

an =
1

2π

∫π
−π

(
1− i tan

θ

2

)
f

(
tan

θ

2

)
e−inθdθ (1.11)
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We may truncate the expansion (1.7)

f(x)(1− ix)≈
−N+1∑
n=−N

ane
inθ (1.12)

and approximate the solution for the coefficients an by discretizing (1.11) via the trapezoidal rule

an ≈ ãn =
1

2N

N−1∑
j=−N

(
1− i tan

θj
2

)
f

(
tan

θj
2

)
e−inθj (1.13)

for an even grid spacing of θj = πj/N . The corresponding grid on x, xj = tan(θj/2), is unevenly
spaced with increased spacing under increasing |xj |. (1.13) takes the form of a discrete Fourier
transform, such that the coefficients ãn may be found via the fast Fourier transform (FFT) of
a vector consisting of the product of the two terms with parentheses. Once the approximate
coefficients ãn are found, we may proceed to approximate both the Hilbert transform and the
spatial derivative of f at xj .

Given the property (1.9), the truncated expansion (1.12), and the approximate expansion
coefficients ãn, the Hilbert transform of f is approximated as

H[f(x)]≈
N−1∑
n=−N

λnãnρn(x)

Performing the variable transformation (1.10) and considering the points xj , this may be
reexpressed as

H[f(xj)]≈
1

1− i tan
θj
2

N−1∑
n=−N

λnãne
inθj (1.14)

where the sum has the form of a discrete inverse Fourier transform, such that the Hilbert
transform of f at xj may be found by taking the inverse FFT of the product λnãn and dividing
the result by (1− ixj).

The first derivative of the truncated expansion of (1.7) is simply

df(x)

dx
≈

N−1∑
n=−N

an
dρn(x)

dx
(1.15)

However, recognizing that

dρn(x)

dx
=
i

2
[nρn−1(x) + (2n+ 1)ρn(x) + (n+ 1)ρn+1(x)]

we may rewrite (1.15) as

df(x)

dx
≈

N−1∑
n=−N

a
(1)
n ρn(x)

where
a
(1)
n =

i

2
[nan−1(x) + (2n+ 1)an(x) + (n+ 1)an+1(x)] (1.16)

such that, after performing the change of variable from x to θ, we find that we may approximate
the derivative at xj by dividing the inverse discrete Fourier transform of a(1)n by 1− ixj :

df(xj)

dx
≈ 1

1− i tan
θj
2

N−1∑
n=−N

a
(1)
n einθj (1.17)
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For the in-plane or anti-plane rupture, the functional L involves the sequence of operations
H[df(x)/dx], whose evaluation at points xj is a simple extension of the above

H[df(xj)/dx]≈ 1

1− i tan
θj
2

N−1∑
n=−N

λna
(1)
n einθj (1.18)

In evaluating a(1)n in (1.16–1.18), we use the approximated coefficients ãn of (1.13).

In our implementation, we follow James and Weideman [1992] and use a slightly different
definition of the basis functions ρn

ρBn (x) =
(B + ix)n

(B − ix)n+1
(1.19)

with the coordinate transformation instead being

eiθ =
B + ix

B − ix , x= tan
θ

2
x=B tan

θ

2
(1.20)

The purpose of this change is that the length B is a parameter allowing for the adjustment of the
grid xj to resolve regions undergoing the sharpest change spatially (i.e., within L). Using (1.19)
and (1.20) we can rederive the preceding results of this sub-section. The key results (1.13), (1.14),
and (1.17), remain the same, except wherever 1− ix appears, it is replaced byB − ix, and a factor
of 1/B is introduced on the right hand side of (1.16).
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