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[1] We present an analysis of inelastic off-fault response in fluid-saturated material during
earthquake shear rupture. The analysis is conducted for 2-D plane strain deformation using
an explicit dynamic finite element formulation. Along the fault, linear slip-weakening
behavior is specified, and the off-fault material is described using an elastic-plastic
description of the Drucker-Prager form, which characterizes the brittle behavior of rocks
under compressive stress when the primary mode of inelastic deformation is frictional
sliding of fissure surfaces, microcracking and granular flow. In this part (part 1), pore
pressure changes were neglected in materials bordering the fault. In part 2, we more fully
address the effects of fluid saturation. During the rapid stressing by a propagating rupture,
the associated undrained response of the surrounding fluid-saturated material may be
either strengthened or weakened against inelastic deformation. We consider
poroelastoplastic materials with and without plastic dilation. During nondilatant undrained
response near a propagating rupture, large increases in pore pressure on the compressional
side of the fault decrease the effective normal stress and weaken the material, and
decreases in pore pressure on the extensional side strengthen the material. Positive plastic
dilatancy reduces pore pressure, universally strengthening the material. Dilatantly
strengthened undrained deformation has a diffusive instability on a long enough timescale
when the underlying drained deformation is unstable. Neglecting this instability on the
short timescale of plastic straining, we show that undrained deformation is notably more
resistant to shear localization than predicted by neglect of pore pressure changes.

Citation: Viesca, R. C., E. L. Templeton, and J. R. Rice (2008), Off-fault plasticity and earthquake rupture dynamics: 2. Effects of

fluid saturation, J. Geophys. Res., 113, B09307, doi:10.1029/2007JB005530.

1. Introduction

1.1. Previous Modeling

[2] Rice et al. [2005] modeled a finite slipping region
propagating at steady rupture velocity in an elastic medium
and used the resulting stress field about the rupture tip to
predict regions which would undergo Coulomb failure.
They extended the work of Poliakov et al. [2002], in which
the stress field was studied about a propagating semi-infinite
rupture, to include not only the stress field about a slip pulse,
but to also include the effects of undrained pore pressure
generation. They found that propagation in undrained con-
ditions, in which the timescale for fluid to leave a particular
length scale is longer than the timescale of stressing a similar
length scale, led to pore pressure increases in the compres-
sional side and pore pressure decreases on the extensional side.
The coseismic pore pressure rise increased the extent of
the predicted regions of failure there, whereas the drop
decreased it (Figure 1). Recent work by de Borst et al.

[2006], Rudnicki and Rice [2006], Réthoré et al. [2007], and
Dunham and Rice [2008] on dynamic rupture propagation in a
fluid saturated linear poroelastic medium with slip-weakening
fault friction shows the evolution of rupture and the pore
pressure increase and decrease respectively on the compres-
sional and extensional sides of the rupture tip.

1.2. Objectives of the Present Work

[3] In part 1 of this study, Templeton and Rice [2008]
considered dynamic rupture in an elastic-plastic material,
which was considered to be dry, or simply to have negligi-
ble changes in pore pressure during rupture. They consid-
ered a Mohr-Coulomb type of plasticity in the form of the
Drucker-Prager model and presented several key results;
specifically, that the extent and distribution of the off-fault
inelastic deformation is dependent on the initial loading
direction of the fault, and the initial proximities of the fault
and off-fault material to failure. They also noted the
propensity of elastic-plastic laws in that class to exhibit
shear localization, and studied features of such localization
in modeling of the present type without an explicit
localization-limiting procedure (other than the ad hoc lim-
itation by finite computational grid spacing).
[4] Noting that the cracked/granulated damage zones

bordering major crustal faults are expected to be porous
and fluid-saturated, we extend this work to include water
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saturation of off-fault material. We present a linear poroelasto-
plastic constitutive relationship for undrained behavior (i.e.,
stressing on a timescale much shorter than the timescale for
fluid to leave the length scale of interest), based upon the
constitutive relationship for drained behavior (i.e., no change
in pore pressure, readily the case for ‘‘dry’’ materials) of part 1.
Subsequently, we study how undrained behavior affects the
distribution andmagnitude of off-fault plastic deformation, the
rupture dynamics, and the localized deformation.

2. Background and Theory

[5] We proceed in two stages in developing our fault model
to be representative of saturated porous media. We first
consider linear poroelastic behavior.We then go on to consider
poroelastoplastic response, including the occurrence of
plastic dilatancy, and the consequent feedback on pore pressure.

2.1. Linear Poroelasticity

[6] The rate of change in fluid mass,m (mass of fluid per unit
bulk volume of porous material, with that volume being mea-
sured in the reference state from which we take strain as zero) is

_m

rf
¼ a

KB
B
_skk

3
þ _p

� �
ð1Þ

where K is the drained bulk modulus of the porous material
(i.e., p = const) and B is Skempton’s coefficient. Under
well-known conditions, both B and a may be expressed in
terms of the respective bulk moduli of the solid and fluid
components, Ks and Kf, and the porosity n (pore space per
unit bulk volume in the reference state)

B ¼ 1� K=Ks

1� 1þ nð ÞK=Ks þ nK=Kf

a ¼ 1� K

Ks

ð2Þ

and a is Biot’s coefficient. The a coefficient appears in the
stress measure controlling strain rate in the elastic regime:
_sij + a _pdij [Biot, 1941; Nur and Byerlee, 1971; Rice and
Cleary, 1976; Wang, 2000].
[7] The interpretation of Skempton’s coefficient is that

under undrained conditions ( _m = 0), the change in pore
pressure is directly proportional to the change in total stress
on an element:

_p ¼ �B
_skk

3
ð3Þ

Figure 1. Contour plot of ratio of maximum shear stress to maximum Coulomb strength as a function of
position around tip of a propagating right-lateral slip pulse for different inclination angles of the initial
most compressive stress, Y = (1/2)tan�1[2sxy

o /(sxx
o � syy

o )], with the fault in a medium without and with
undrained poroelastic response for (left) Skempton B = 0 and (right) B = 0.6, respectively. The seismic S
ratio is 6.4 and fr/fd = 0.2. Rupture speeds are scaled with the shear wave speed Cs (so that these cases are
very near the Rayleigh wave speed, 0.92Cs), and distance with the scale length R*o (called Ro in the text)
that the slip-weakening zone would have at very low propagation speed and under a prestress
corresponding to a large value of the seismic S ratio. Adapted from Rice et al. [2005].
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For elastic-plastic response, the strain rate may be
decomposed into elastic and plastic contributions:

Dij ¼ De
ij þDp

ij ð4Þ

The linear poroelastic constitutive relations give the elastic
strain rate of the bulk material, Dij

e, as a function of the rates
of total stress on the bulk material, _sij, and pore pressure, _p:

De
ij ¼

_sij
2G

þ dij
3K

_skk

3
þ a _p

� �
ð5Þ

where G is the shear modulus and sij = sij � dijskk/3 is the
deviatoric stress tensor.
[8] For drained behavior _p = 0, (5) simplifies to

De
ij ¼

_sij
2G

þ dij
3K

_skk

3
ð6Þ

For undrained behavior ( _m = 0), using (3) simplifies (5) to

De
ij ¼

_sij
2G

þ dij
3Ku

_skk

3
ð7Þ

where Ku is the undrained bulk modulus [Rice and Cleary,
1976]:

Ku ¼
K

1� aB
ð8Þ

Given the short time of stressing associated with rupture
propagation, we can reasonably expect undrained deforma-
tion of the off-fault material for large enough lengths. The
propagation speed of the rupture is generally of the order of
the shear wave speed Cs and the region about which
significant deformation occurs is expected [Poliakov et al.,
2002; Rice et al., 2005; Templeton and Rice, 2008] to be on
the order of the slip-weakening scale length Ro (see captions
of Figures 1 and 3), argued from seismic constraints to be of
the order of a few tens of meters at midseismogenic zone
depths [Rice et al., 2005]. Rice [2006] has shown on the
basis of lab data for intact ultracataclastic gouge that such
material is expected to have a hydraulic diffusivity, ahy, of
order of 10�6 m2/s at midseismogenic depths. The hydraulic
diffusivity is ahy = k/(hfbst) where k is the permeability (the
component of greatest uncertainty), hf is the fluid viscosity,
and bst is a storage coefficient. Even allowing for up to 106

more permeability for other, less finely grained, materials of
the damage zone, would allow for diffusivities of order
10�6 to 1 m2/s. To consider deformation as effectively
undrained, we compare the diffusive length associated with
the time Ro/Cs of coseismic stressing to the expected length
scale of deformation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ahyRo=Cs

p
Ro

¼
ffiffiffiffiffiffiffiffiffiffi
ahy

RoCs

r
ð9Þ

which is �1 for the estimated values of Ro and ahy and the
shear wave speed being of order of km/s. Therefore, we can
reasonably expect undrained deformation except down to
short diffusive length scales of order of a few millimeters to
centimeters.

2.2. Poroelastoplasticity

[9] Using results from Rice [1977] and Rudnicki [1984b,
2000] (see also Appendices A and B), we extend the
equations governing plastic increments in strain introduced
in part 1 to the fluid-saturated state.
[10] The first result is that plastic dilatational strain

appears only as a plastic increment in pore space and
consequently, (1) may be written as

_m ¼ rf
a
KB

_pþ B
_skk

3

� �
þ rfD

p
kk ð10Þ

The additional result of Rice [1977] is that the appropriate
effective stress measure for evaluating plastic strain
increments is the Terzaghi effective stress

s0
ij ¼ sij þ pdij ð11Þ

Consequently, using the flow rule and pressure-dependent
yield criterion introduced in part 1, we find that

Dp
ij ¼

1

h

sij

2�t
þ dij

b
3

� �
skl

2�t
þ dkl

m
3

� �
_skl þ _pdklð Þ ð12Þ

where �t, the scalar measure of shear stress, is the second
invariant of sij

�t ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1

2
sijsij

r
ð13Þ

and where h is a measure of material hardening, m is the
internal friction parameter in the Drucker-Prager yield
criterion (Appendix B), and b is the measure of inelastic
dilatancy taken to be the ratio of Dkk

p
to the equivalent

plastic shear strain, _gpl, defined in Appendix B. For drained
behavior (i.e., _p = 0), the plastic strain increments are
readily seen to be

Dp
ij ¼

1

h

sij

2�t
þ dij

b
3

� �
skl

2�t
þ dkl

m
3

� �
_skl ð14Þ

as used in part 1.
[11] For undrained behavior (i.e., _m = 0), the plastic strain

increment expression has been shown to be identical in form
to that for drained increments, but with replacement of the
drained parameters h, m, and b with new effective undrained
parameters hu, mu, bu. This undrained inelastic behavior was
first noted in the analysis of simple shear deformation to
affect the hardening term (hu > h is characterized as
‘‘dilatant hardening’’) [Rice, 1975a; Rice and Rudnicki,
1979]. Later work [Rudnicki, 1984b, 2000; Benallal and
Comi, 2002, 2003] investigated the general constitutive
response of equations (5), (10), and (12) with _m = 0 and
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found that in all such (undrained) deformations with plas-
ticity the total strain rate is

Dij ¼ De
ij þDp

ij

¼ _sij
2G

þ dij
3Ku

_skk

3
þ 1

hu

sij

2�t
þ dij

bu

3

� �
skl

2�t
þ dkl

mu

3

� �
_skl ð15Þ

where hu, bu, and mu are effective undrained plastic material
parameters, defined as

hu ¼ hþ mbKB
a

ð16Þ

bu ¼ 1� Bð Þb ð17Þ

mu ¼ 1� Bð Þm ð18Þ

If we normalize strain by tp/2G and stress by tp in
equations (15)–(18), noting that K/G = 2(1 + n)/[3(1 � 2n)]
and similarly for Ku/G replacing n with nu, the undrained
Poisson ratio, we find that for a given sij

o/tp, the relevant
parameters describing increments in strain are: nu, hu/G, mu,
and bu, or equivalently in terms of more primitive drained
and poroelastic properties, n, h/G, m, b, a, and B.
[12] As part of deriving equations (15)–(18) the un-

drained change in pore pressure in a poroelastoplastic
material with plastic dilatancy can be decomposed into a
regular elastic undrained response and an additional term
due to plastic dilatancy,

_p ¼ �B
_skk

3
� b

KB

a

_�t þ m 1� Bð Þ _skk=3

hþ mbKB=a
ð19Þ

In addition to these undrained parameters, when considering
the yield function in the undrained state (see Templeton and
Rice [2008] for a full introduction)

�t þ m
skk

3
� b ¼ 0 ð20Þ

an effective cohesion, bu, must be included to fully
represent undrained behavior

bu ¼ b� Bm
so
kk

3
ð21Þ

where skk
o is the trace of the initial effective stress. That is,

the stresses sij, defined as the initial effective stress sij
o plus

the change Dsij in total stress associated with the rapid
undrained deformation, sij = sij

o + Dsij, will, at the onset of
plastic response, satisfy

�t þ mu

skk

3
� bu ¼ 0 ð22Þ

Figure 2 shows a drained and the corresponding undrained
yield function. Note the material becomes easier to yield
during undrained deformation when the mean normal stress
is more compressive than the initial value. Similarly, the

material becomes stronger when the mean normal stress is
more tensile than the initial value.
[13] The derivation of the undrained material parameters

is available in Appendix B. Clearly, the transformation of
parameters embodied in equations (8), (16)–(18), and (22),
transforms the undrained elastic-plastic problem into one of
precisely the same form as the solutions of part 1 that
neglected changes of pore pressure. Any solution given in
that part 1 may be reinterpreted as an undrained solution for
a material of different parameters, and conversely for the
solutions given in this part.

2.3. Slip-Weakening Friction

[14] We approximate the shear strength of the fault during
rupture as a normal stress-dependent Coulomb friction law
with a peak strength tp that degrades with slip Du to a
residual strength, tr over a characteristic length scale Dc

(Figure 3b) [Ida, 1972; Palmer and Rice, 1973]:

t ¼ tp � tp � tr
� 	

Du
Dc

; Du 	 Dc

tr; Du > Dc



ð23Þ

where we take the peak and residual strengths to be the
product of the fault-normal effective stress, s0n = sn + pf, and
peak and residual friction coefficients fp and fr, respectively,
where pf is the pore fluid pressure on the fault plane. A
measure of the initial fault shear stress relative to the fault
peak and residual strengths is the seismic S ratio:

S ¼
tp � so

xy

so
xy � tr

ð24Þ

For the elastic case, in which there are no contrasts in
hydraulic diffusivities and poroelastic properties across the
fault, there is no change in the on-fault pore pressure due to
the antisymmetry of the change in mean-normal pressure on

Figure 2. Illustration of the effective undrained cohesion,
bu, and internal friction coefficient, mu, for a given initial
effective stress state, sij

o, drained cohesion, b, and drained
internal friction, m. Here skk = skk

o + Dskk, where Dskk is
the total stress change that occurs under undrained
conditions; and here �t is based on sij, where sij = sij

o +
Dsij, where sij

o is independent of initial pore pressure.
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each side of the fault. However, for that elastic case, where
there is a contrast of properties across the fault, the pore
pressure change on the fault itself would depend on the
respective permeabilities and storage coefficients on the
compressional and extensional side of the fault [Rudnicki
and Rice, 2006; Dunham and Rice, 2008]. As an example, a
rupture through a fault with more permeable material on the
compressional side of the fault than on the extensional side
would induce a net pore pressure increase on the fault, favoring
further instability and rupture. For a dynamic rupture with
crack-like response, this effect can either compete against or
enhance the effect of an elastic property contrast.
[15] For our first investigations as reported here, for

simplicity we neglect change in pore fluid pressure on the
fault. Their full inclusion, left to future study, requires an
alteration from standard finite element analysis for rupture
dynamics. As already clear from the elastic analyses cited,
whether the fault pore pressure pf increases or decreases will
be sensitive to material properties, especially permeability,
on the few millimeters to centimeters scale within the
damage zones on the two sides of the slip surface. As
shown in part 1, plastic deformation occurs asymmetrically
about and near the fault and consequently introduces a
deviation from pure antisymmetry in the fault-parallel stress
changes and in the amount of plastic dilatation. We would
therefore expect some change in pore pressure on the fault,
even for similar poroelastic properties and permeabilities

across the fault; if dilatancy had the dominant effect on pore
pressure change, we may expect a stabilization on the fault
through an increase in the effective fault-normal stress.
While changes to rupture acceleration will change the
development over distance of the extent and magnitude of
stress around the crack tip (being functions of rupture
velocity), we focus here on the effect of saturated off-fault
material on plastic deformation patterns in comparison with
those patterns found in the dry counterparts, as in part 1.
Therefore we neglect in this study the effects of pore
pressure increases or decreases on the slip-weakening
response of the fault. Such slip weakening, as convention-
ally assumed, may in fact be a proxy for much more
significant but highly localized pore pressure changes along
the fault due to thermal pressurization [Sibson, 1973;
Lachenbruch, 1980; Mase and Smith, 1987; Andrews,
2002; Noda and Shimamoto, 2005; Rice, 2006; Rempel
and Rice, 2006; Suzuki and Yamashita, 2006; Bizzarri and
Cocco, 2006].
[16] For a stationary crack, this fault constitutive relation

results in a length scale, R0, over which the strength drops
from peak to residual behind the crack tip (Figure 3c), given
approximately by [Palmer and Rice, 1973]

R0 ¼
9p

16 1� nð Þ
GG

tp � tr
� 	2 ð25Þ

Figure 3. (a) A 2-D model geometry with initial stresses resulting in an angle of most compressive
stress to the fault, Y. The right-lateral rupture is nucleated in the center of the fault along length L0c.
(b) Linear slip-weakening friction model used to describe the degradation of the shear strength of the fault
from a peak to a residual strength as a function of slip along the fault. (c) Example stress distribution
around crack tip during propagation; Ro is the size of R in the limit of low rupture speed and large seismic
S ratio, G is shear modulus. (d) Fault shear stresses resulting from proscribed initial slip distribution over
length L0c slightly greater than static nucleation length estimate Lc.
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where G is the fracture energy (G = (tp � tr)Dc/2 for linear
slip weakening) and n is the Poisson ratio. Rice et al. [2005]
estimated R0 to range from approximately 1 m to 40 m at
midseismogenic crustal depth based on estimates of G using
seismic slip inversion results of Heaton, [1990] and an
assumed fault strength drop tp � td based on fs = 0.6 and
much smaller fd.

3. Numerical Procedure

3.1. Implementation

[17] As outlined in part 1, we use the finite element
method, in the form of ABAQUS/Explicit, [ABAQUS,
Inc., 2005] to model dynamic mode II shear rupture propa-
gation in elastic-plastic material. The rupture direction and
slip direction coincide and are in the x direction (Figure 3a).
The fault plane is parallel to the intermediate principal stress
direction of the tectonic prestress, sij

o. A 2-D rectangular
mesh composed of linear four-noded linear reduced inte-
gration plane strain elements and containing a horizontal
fault is used to model shear rupture propagation along the
fault and the resulting off-fault stresses and deformation.
[18] Initial effective stress in the material surrounding

the fault is sij
o, taken here for the reasons explained to be the

effective prestress, sij
o,total + podij, which is based on the

total prestress and po as an ambient pore pressure prevailing
at midseismogenic depth. We compare ruptures in dry
material to those in saturated material at the same initial
effective stress. The angle of the most compressive effective
stress to the fault is Y (Figure 3a). The initial effective stress
state is uniform and the out of plane principal stress is szz

o =
(sxx

o + syy
o)/2, meaning that szz

o = 0, so the Mohr-Coulomb and
Drucker-Prager failure criteria initially coincide (see part 1).
The deformation of the off-fault material in response to
stress change Dsij follows the undrained constitutive law
outlined in section 2, with sij identified as sij

o + Dsij.
[19] All stresses in the analyses are nondimensionalized

by the initial fault-normal effective stress, syy
o , and lengths

are nondimensionalized by R0, the length of the static, low
stress drop, slip-weakening zone, as given in (25). The
element spacing Dx is chosen so that the static slip-
weakening zone is well resolved, with Dx = R0/20.
[20] A mode II shear rupture is nucleated on the fault by

altering the initial shear stress distribution along a portion of
the fault of length L0c in Figure 3a. The initial shear stress
distribution prescribed along the nucleation zone is pro-
duced using linear slip weakening for an initial slip distri-
bution like in the work by Kame et al. [2003]. The length of
the nucleation zone, L0c, is slightly greater than the critical
nucleation length,

Lc ¼
16

3p
GG

so
xy � tr

� �2 ¼ 64

9p2
tp � tr
so
xy � tr

 !2

R0 ð26Þ

at which a static crack becomes unstable for the large S limit
coinciding with singular elastic crack mechanics with small-
scale yielding. The initial alteration in shear stress along
length L0c results in a stress concentration slightly larger than
the peak strength at the tips of the static nucleation zone.
This initiates a dynamic rupture at both ends of the

nucleation zone at the start of the simulation to produce a
bilateral right-lateral shear rupture. Along the predefined
fault, a split node contact procedure is used to prescribe the
shear strength, whose evolution follows (23). Details of
the implementation of the split node procedure are given in
the Appendix B of part 1.
[21] The entire mesh is surrounded by absorbing elements

to minimize reflections from the boundaries. These ele-
ments introduce normal and shear tractions on the boundary
of the finite element mesh that are proportional to the
normal and shear components of velocity at the boundary,
with damping constants chosen as the wave impedence
factors to minimize reflections of dilational and shear wave
energy. These elements perform best when the incident
waves arrive perpendicular to the absorbing elements.
Forces are applied between the boundary of the plane strain
elements and the infinite elements consistent with the
prescribed initial stress state.

3.2. Parameter Selection

[22] Data for intact ultracataclasite fault gouge, summa-
rized by Rice [2006], Table 1, as well as corrections for
increased damage by an order of magnitude increase in
permeability and a doubling of drained compressibility give
B values ranging from 0.6–0.9 and a values ranging from
0.65–0.96. Rice and Cleary [1976] provide data in their
Table 1 for a variety of sandstones and granites. After
correcting the fluid compressibility to a more representative
value for midseismogenic depth conditions, the B values
range from 0.4–0.8 and values of a are between 0.24 and
0.78. In our simulations, we use n = 0.25, a = 0.45 and
values of B ranging from 0.5 to 0.9. The undrained Poisson
ratios corresponding to values of the Skempton coefficient
B = 0.5,0.7,0.9 are, respectively, nu = 0.30,0.32,0.34. In
results shown here we treat the drained response as ideally
plastic, taking h/G = 0. Values for the inelastic internal
friction and dilatancy coefficients m and b are given by
Rudnicki and Rice [1975] on the basis of rock triaxial
experiments conducted by Brace et al. [1966]. The values
for m and b of Westerley granite, over a range of confining
pressures, are respectively 0.4–0.9 and 0.2–0.4. Here we
use an intermediate value for internal friction (m = 0.6,
consistent with tan f = 0.75 in the Mohr-Coulomb criterion,
using m = sin f) and when we consider inelastic dilatancy,
we examine the range of values, b = 0–0.4. In section 4.1,
we compare the effects of varying the Skempton coefficient
and plastic dilation.
[23] We define the initial effective stress state using the

angle the most compressive initial effective stress makes to
the fault, Y, the fault frictional parameters, fs and fd, and the
ratio S relating the initial fault shear stress to the peak and
residual fault strength. Additionally, we verify that the
initial stress state does not violate our Drucker-Prager yield
criterion. We define a measure of closeness to failure (see
part 1 for additional discussion) as

CF ¼ �t
�mso

kk=3þ b
ð27Þ

If CF >1 the initial state of stress violates the yield criterion.
Note, the definition of bu is such that using the undrained
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material parameters mu and bu in place of the drained
parameters would not change CF.

4. Results and Discussion

4.1. Effect of Undrained Pore Pressure Generation on
Extent of Inelastic Deformation

[24] Initially considering the off-fault material to be
poroelastoplastic with no plastic dilatation, we find that
changes in pore pressure significantly increase or decrease
the amount of off-fault inelastic deformation. Assuming
zero plastic dilatation, the only source of changing pore
pressure is from the elastic part of the response. Therefore,
the pore pressure response to stressing under undrained
conditions is then described by values of the Skempton
coefficient, B. Since the changes in pore pressure are
proportional to changes in mean normal stress on the bulk
material, one may expect during rupture propagation that
pore pressure increases on the compressional side of the

fault and pore pressure decreases on the extensional side.
These increases and decreases in pressure decrease or
increase, respectively, the effective normal compressive
stress, and bring the material closer or further from failure.
[25] In Figure 4, we plot the distribution of inelastic

deformation (in terms of the equivalent plastic shear strain
gpl defined as the time integral of _gpl, defined in Appendix
B) about one side of a bilateral rupture on a right-lateral
fault. Here we consider a single, shallow angle (14�) of the
initial most compressive stress, and the initial effective
stress state is further characterized by a seismic S ratio
value of 1.0, with fixed fault frictional parameters fs = 0.65,
fd = 0.05, and off-fault material friction parameter m = 0.6.
We consider the drained response (i.e., neglecting changes
in p) and undrained response, for three cases in which we
vary the value of the Skempton coefficient (B = 0.5, 0.7,
0.9). When pore pressure changes are neglected or absent,
the inelastic deformation occurs on both the compressional
and extensional side of the fault. Considering saturated off-

Figure 4. Contour plots of gpl/(tp/2G) as a function of distance from the fault for S = 1, for Y = 14�,
fixed on- and off-fault strength parameters (fs = 0.65, fd = 0.05; m = 0.6 (tan f = 0.75)), fixed closeness of
the initial stress state to off-fault failure (CF = 0.8), and no plastic dilation. We consider a case in which
pore pressure changes are neglected (Dp = 0) and undrained cases for which an increase of the Skempton
coefficient (B = 0.5,0.7,0.9) illustrates the role of undrained pore pressure generation in increasing the
extent of inelastic deformation.
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fault material (and momentarily neglecting inelastic dilata-
tion), we find that the extensional side is completely
strengthened against inelastic deformation and the compres-
sional side is weakened by respective coseismic pore
pressure decreases and increases. The compressional side

is further weakened, as expected, with increases of the
Skempton coefficient.
[26] In Figure 5, we plot the distribution of inelastic

deformation for a steeper Y (56�), holding the same values
of fs, fd, m, and varying over the same values of B as in
Figure 4. Unlike in the case for a shallower Y, here we find
that to the extent the fault has ruptured, for a steeper Y and
the absence of pore pressure changes, the inelastic defor-
mation occurs on the extensional side of the fault. As
expected, increasing values of B leads to an increasing
reduction in the extent of the plastically deforming region.
[27] In Figure 6, we consider the effect of undrained

response with inelastic dilatancy and plot the equivalent

Figure 5. Contour plots of gpl/(tp/2G) as a function of
distance from the fault for S = 1,Y = 56�, fixed on- and off-
fault strength parameters (fs = 0.45, fd = 0.045; m = 0.6),
fixed closeness of the initial stress state to off-fault failure
(CF = 0.5), and no plastic dilation. We consider a case in
which pore pressure changes are neglected (Dp = 0) and
undrained cases for which an increase of the Skempton
coefficient (B = 0.5, 0.7, 0.9). As a contrast to a shallower
angle (Y = 14�, Figure 4), the drained response exhibits
deformation on the extensional side of the fault. Here the
undrained cases (B = 0.5, 0.7, 0.9) show a decrease in
inelastic deformation.

Figure 6. Contours of gpl/(tp/2G) as a function of distance
from the fault, with all parameters the same as in Figure 4,
except here we consider the effects of inelastic dilatancy on
the undrained response. For the case of Figure 4 in which
B = 0.7 (repeated at top here), increasing plastic dilatancy
(b = 0, 0.2, 0.4) has significant effect on reducing the extent
of inelastic deformation.

Figure 7. Contours of gpl/(tp/2G) as a function of distance
from the fault, with all parameters the same as in Figure 5,
except here we consider the effects of inelastic dilatancy on
the undrained response. For the case of Figure 4 in which
B = 0.7 (repeated at top here), introducing plastic dilatancy
serves to reduce the extent plasticity but does not have as
significant effect as in Figure 6.

Figure 8. Plot of normalized rupture tip position versus
normalized time for drained and undrained Y = 14� cases of
Figure 4 (i.e., without inelastic dilatancy). Here CS is the
shear wave speed. The increasing extent of inelastic
deformation from drained to undrained responses is
reflected in the slight delay for the rupture tip to reach a
particular distance of the fault.
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plastic shear strain about one side of a bilateral rupture on a
right-lateral fault. Here we again consider a single, shallow
angle (14�) of the initial most compressive stress, with the
same initial stress state and material parameters, except here
we allow inelastic dilatancy (b = 0.2–0.4) for the case of
Figure 4 that formerly had no such dilatancy and B = 0.7.
Here we might expect that the pore pressure reduction due
to plastic dilatancy would work against the pore pressure
increase on the compressional side of the fault due to the
elastic response. In comparison with the case of no inelastic
dilatancy, we find that there is a significant decrease in
magnitude and extent of inelastic deformation left behind by
the rupture front. Additionally, we see an increase of

inelastic deformation occurring at acute angles ahead of
the rupture front. For a large value of b, 0.4, we find that the
increase in plastic deformation due to pore pressure
increases is reduced by plastic dilatancy to the point of
reducing the extent of deformation approximately to the
original, drained (Dp = 0) calculation in Figure 4.
[28] In Figure 7, for the steep (56�) prestress angle, we

plot the distribution of inelastic deformation holding the
same values of fs, fd, m, and examine the effect of inelastic
dilatancy as in Figure 6. Here, pore pressure reductions
from dilatancy act in conjunction with those reductions due
to the poroelastic material response to reduce the extent and
magnitude of the inelastic deformation. The further reduc-
tion from the introduction of inelastic dilatancy is slight
relative to the reductions due to changes of pressure from
solely poroelastic behavior.
[29] With the additional allowance for plastic dilatancy

(i.e., the creation of pore space through inelastic deforma-
tion), we find that the overall effect is to reduce inelastic
deformation (note that the equivalent plastic shear strain, to
which the dilation is proportional, is small and of order tp/G
in the off-fault region). The creation of additional pore
space due to plastic dilatation under undrained conditions
creates a decrease in pore pressure, irrespective of whether a
point is considered on the extensional or compressional side
of the fault. Thus, plastic dilatation serves as a mechanism
to increase the effective stress and reduce initiated inelastic
deformation. Equivalently, we may say that the material is
dilatantly hardened.

4.2. Effect of Pore Pressure-Induced Changes in
Inelastic Deformation on Rupture Propagation

[30] The reduction or increase in the amount of off-fault
plastic work being done as the rupture passes affects the
rupture propagation [Andrews, 2005]. In the cases presented
in Figures 4 and 5, where undrained pore pressure gener-
ation controlled by the material Skempton coefficient pro-
hibits or encourages failure, the varying amount of plastic
work is readily evident by the changing extent and magni-
tude of plastic deformation. Figure 8 plots the position of
the rupture front versus time for the cases presented in
Figure 4 and for the case of rupture in an elastic material not

Figure 9. Plot of normalized rupture tip position versus
normalized time for undrained Y = 14� cases of Figure 6
with and without dilatancy. Here, the decreasing extent of
inelastic deformation with increasing dilatancy is reflected
in the slight decrease in time for the rupture tip to reach a
particular distance of the fault. In addition to the cases
presented in Figure 6, we also consider a case of rupture in
an undrained elastic medium. In Figure 8 we considered a
similar elastic case neglecting pore pressure changes. Here
we find that under undrained conditions, the rupture
transitions to supershear.

Figure 10. Plots of the normalized critical value of hardening hcr, at which localization is expected to
occur for static loading, versus the stress state parameter N. No localization of deformation is expected if
h � hcr. (a) We neglect effects of inelastic dilatancy (b = 0). (b) We consider a dilatancy b = 0.3 and hold
all other parameters fixed. Note the effect of dilatant hardening in the reduction of hcr,u.
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including changes in pore pressure. Here, the net effect of
the undrained response, not considering inelastic dilation, is
an increase in the extent and magnitude of inelastic defor-
mation. Consequently, the rupture propagates slightly more
slowly with increasing extent. For the cases of Figure 6 in
which we evaluate inelastic dilatancy during the rupture
under undrained conditions, the net effect is a reduction in
the extent in deformation. Here in Figure 9 the result is a
speeding up of rupture propagation that approaches the un-
drained poroelastic solution as the extent is decreased. Addi-
tionally, there is found a suppression (or delay) of the transition
to supershear in some cases evaluated where plasticity was
incorporated in part 1 [Templeton and Rice, 2008].

4.3. Role of Undrained Conditions and Plastic
Dilatancy in the Elimination of Plastic Localization

[31] Part 1 has shown strain localization to be pervasive
in the off-fault inelastic deformation during dynamic rupture
when neglecting fluid saturation, at least for zero or even
low positive values of hardening h. When fluid saturation
is considered and the material is treated as undrained (i.e.,
no fluid diffusion occurs), these localization features appar-
ently disappear (we have not done the extreme mesh refine-
ments of part 1). On the basis of the work of Rudnicki and
Rice [1975], it was shown in part 1 that the occurrence of
these localization features stemming from the fault is
essentially determined by the drained inelastic hardening
modulus, h. Localization occurs when h falls below a
critical hardening value, hcr, which is determined by m, b,
and the normalized direction of the intermediate principal
deviatoric stress, N

hcr

G
¼ 1þ n

9 1� nð Þ b � mð Þ2� 1þ n
2

N þ b þ m
3

� �2

ð28Þ

where

N ¼ s2=

ffiffiffiffiffiffiffiffiffiffiffiffi
1

2
sijsij

r
ð29Þ

This mode of localization (as opposed to compaction
banding) is the only mode expected for low-porosity, dilating
rocks, such as that considered in sections 4.1 and 4.2.
[32] We have shown that for undrained conditions, effec-

tive undrained parameters replace their drained counter-
parts. The consequence of this is that a critical undrained
hardening may naively be calculated on the basis of (28).
The result is that the critical hardening hcr, now called hcr,u,
seems to be reduced drastically for most stress states
(Figures 10a and 10b):

hcr;u

G
¼ 1þ nu
9 1� nuð Þ 1� Bð Þ2 b � mð Þ2

� 1þ nu
2

N þ 1� Bð Þb þ m
3

� �2

�K

G

mbB
a

ð30Þ

(the ratio K/G may be written 2(1 + n)/[3(1 � 2n)] where n
is the Poisson ratio under drained conditions). Here for b =
0, as B ! 1, hcr,u 	 0, indicating that localization would not
be as pervasive (or exist at all) for undrained cases, when the

drained h � 0. Of course, this does not eliminate the
possibility that the actual h may be large and negative (e.g.,
due to a loss of a cohesive strength component gained
through cementation processes on the interseismic timescale),
so that even undrained assumptions could make a negative
hcr,u larger than h and the localization issue would remain.
[33] However, consideration of hcr,u must additionally be

tempered by the fact that the undrained material is diffu-
sively unstable [Rice, 1975a; Rudnicki, 1984a] when h < hcr
(the drained value of equation (28)), meaning that since
fluid does diffuse over some sufficiently small length scale
the material will tend toward drained behavior as time for
the diffusion of fluid mass passes. Therefore, there is a
competition between the timescale of stressing from the
rupture tip and the timescale for fluid diffusion to a potential
source of localized failure. For a high hydraulic diffusivity
estimate for no longer intact granite of ahy  10�4 m2/s and
a low estimation of expected localized failure thickness on
the order of 100 mm, the characteristic timescale for
diffusion is of the order of 10�4 s. If the region over which
significant stressing occurs is on the order of Ro, thought to be
a few tens of meters, and the rupture propagation is on the
order of the shear wave speed, the corresponding timescale
for stressing is 10�2 s. In such case this would be an issue
requiring further examination, which we defer to future work.
However, for an immature shear zone with a thickness of
order 10 mm, the timescale for diffusion will increase with
thickness and rise to the order of the stressing timescale.
Therefore, for localized deformation on these larger length
scales, hcr,u may begin to be the representative hardening
value, not considering the effects of significant softening.

5. Conclusion

[34] Response of fluid-saturated materials is assumed to
be effectively undrained on the short timescale of stress
concentration near a passing rupture front along a fault.
Poroelastic behavior and inelastic dilation then change the
location and spatial extent of inelastic deformation patterns
created by dynamic rupture. Undrained pressure changes
due to the poroelastic response, which oppose isotropic
changes in stress and are proportional to the Skempton
coefficient B, strengthen the extensional side of the fault and
weaken the compressional side against inelastic yielding.
Inelastic dilatation, controlled by b, reduces pore pressure
under undrained conditions and strengthens both sides. The
undrained response can determine which side of the fault
experiences inelastic deformation. For a case examined with
a shallow prestress angle Y, inelastic deformation during
rupture occurs on both sides of the fault when drained
conditions are assumed. However, the undrained response
can have the remarkable effect of completely strengthening
the extensional side of the fault, leaving inelastic deforma-
tion to occur and increase in extent on the compressional
side. For a steep angle Y, for which deformation occurs on
the extensional side, the effect of undrained pore pressure
change only serves to reduce the extent on the extensional
side and are not sufficient to weaken the compressional side
to the point of yielding. The changed pattern of inelastic
deformation between drained and undrained cases only
moderately affects the rupture propagation: for significant
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increases in plastic deformation (e.g., for low Y), the rupture
in undrained material requires slightly more time to prop-
agate to a comparable distance.

Appendix A: Inelastic Constitutive Properties in
the Deformation of Saturated Porous Media

[35] This section outlines and gives in somewhat greater
detail the arguments presented in an extended abstract [Rice,
1977], drawing on the constitutive methodology of Rice
[1971, 1975b], and providing some constraints on repre-
senting plastic strain and porosity changes in fluid-saturated
geomaterials. The focus is on a representative volume of
material that is undergoing locally heterogeneous inelastic
deformation by frictional slip on contacting fissure surfaces
and by open microcrack growth. The macroscopic average
stress, sij, acting on the locally heterogeneous material can
be regarded as determined by its macroscopic average strain,
�ij, its pore pressure, p, and the current state of locally
heterogeneous inelastic slip on fissures and microcracking
within the representative volume of material. The latter array
of microscale variables is represented symbolically by H; it
would be impossible to describe them other than statistically,
but the only properties that we need forH are these: whenH is
fixed (no slip on fissures, no crack growth) during an incre-
ment in sij, �ij, and p, the relation between those variables
corresponds to normal poroelastic response. When there is an
increment in local slip on fissures and/or microcrack growth,
we understand there to be an increment in H, and the overall
response is poroelastoplastic. Thus we can write

sij ¼ sij �kl; p;Hð Þ ðA1Þ

where the relation between the variables at fixed H
describes a poroelastic relation.
[36] The strain energy u = u(�kl, n, H) of the solid phase

per unit reference state volume of the porous material then
satisfies [e.g., Rice and Cleary, 1976], for fixed H,

du ¼ sijd�ij þ pdn ðA2Þ

Letting y = y(sij, p, H) = sij�ij + pn � u, it then follows that

�ij ¼
@y
@sij

n ¼ @y
@p

ðA3Þ

where the derivatives are at fixed H and hence refer to
elastic changes.
[37] We define plastic parts of the variations of functions

like the above potential y as the change in the value of the
potential due to variations in H, but with y evaluated for the
same sij and p

dpy ¼ y sij; p;H þ dH
� 	

� y sij; p;H
� 	

ðA4Þ

The plastic part [see Rice, 1971] of strain and porosity
increments are dp�ij = �ij(sij, p, H + dH) � �ij(sij, p, H) and
dpn = n(sij, p, H + dH) � n(sij, p, H) and these satisfy

dp�ij ¼
@ dpyð Þ
@sij

dpn ¼ @ dpyð Þ
@p

ðA5Þ

[38] We then let changes in states of microscopic solid
inelastic deformation H and H + dH be characterized by
incremental internal variables dxk with corresponding work
conjugate forces fk(sij, p, H) such that the sum of their
products when averaged over a representative macroscopic
volume (where angle brackets represent the volume average
of the quantity within the brackets) is

hfkdxki ¼ dpy ðA6Þ

Consequently, from (A5) and (A6) the plastic variations of
the strain and porosity are given by

dp�ij ¼ h @fk
@sij

dxki dpn ¼ h@fk
@p

dxki ðA7Þ

[39] When considering a saturated, fissured rock mass or
granular material, inelastic deformation may take the form
of crack extension and frictional sliding along fissure
surfaces. As introduced by Rice [1975b], the volume
average representation of dp�ij in the case of microcrack
extension within a representative volume V includes an
integration over all crack front arcs (Gc), with arc length
s, of the local fracture energy release Gloc per unit advance
of the crack area times the advance area da(s)ds

h @fk
@sij

dxki ¼
1

V

Z
Gc

@Gloc sij; p;H
� 	
@sij

da sð Þds ðA8Þ

Similarly, in the case of frictional sliding along fissure
surfaces Sf, which experience local slip increments d(Du)
and over which local shear stress t acts in the slip direction,
the volume average representation of dp�ij in (A7) can be
expressed as

h @fk
@sij

dxki ¼
1

V

Z
Sf

@t sij; p;H
� 	
@sij

d Duð ÞdS ðA9Þ

[40] Now, we consider porous materials for which all pore
spaces are in matter communication with the pore fluid and
for which all of the solid phase has an identical isotropic
elastic response to local increments in isotropic stress. The
same special materials are considered for estimating some
of the constants of poroelasticity [Nur and Byerlee, 1971;
Rice and Cleary, 1976]. In those materials simultaneous
macroscopic stress and pore pressure increments of the form

dsij ¼ �dijdP dp ¼ dP; ðA10Þ

result in a uniform, isotropic local stress increment dsij
local =

�dijdP at each microscale point of the solid phase. (sij
local is

of course not equal to the macroscopic stress sij, but
increments in dsij

local, when H is fixed, will be linearly
proportional to increments dsij and dp, with local
coefficients in that proportionality constrained by the
requirement dsij

local = �dPdij in the case of (A10).) Such
isotropic changes in local stress do not alter local stress t or
effective normal stress on fissures and, because they leave
local crack tip singular stress fields unaffected, they do not
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alter the local G. Thus such increments would not cause a
change in the work conjugate forces f discussed above.
Neither would they induce a further increment of plastic
deformation, because they would not slip a fissure surface
(if governed by normal concepts of effective stress) nor
grow a crack if its growth is controlled by G.
[41] The increments dsij and dp considered are, of course,

exactly those which cause no change in the macroscopic
Terzaghi effective stress,

s0
ij ¼ sij þ pdij ðA11Þ

and therefore their induction of no further plastic deforma-
tion means that the Terzaghi stress is the appropriate stress
controlling macroscopic inelastic strain increments. An
additional result of the force conjugate to microscopic
inelastic deformation, f(sij, p, H), remaining unaffected by
stress increments in the form of (A10) is that

df ¼ @f

@sij

dsij þ
@f

@p
dp ¼ � @f

@sij

dij þ
@f

@p

� �
dP ¼ 0 ðA12Þ

for an arbitrary increment dP. Hence, the term within the
parentheses must be identically zero. Using (A12) and (A7),
we find that

dp�kk ¼ dpn ðA13Þ

i.e., plastic dilatancy is an inelastic increase in porosity.

Appendix B: Derivation of Effective Material
Parameters for Undrained Behavior

[42] When the stress state reaches a prescribed yield
criterion, the material can deform plastically. The yield
criterion is defined by the yield function F, such that F =
0 when the material deforms plastically. The yield function
for the Drucker-Prager criterion, as introduced in part 1
[Templeton and Rice, 2008] except here explicitly evaluated
in terms of the Terzaghi effective stress, is

F ¼ �t þ m
skk

3
þ p

� �
� b ðB1Þ

Any hardening or softening of the material due to inelastic
deformation is reflected by the movement of the yield
surface in stress space. To ensure that the stress state
continues to be on the yield surface during hardening, the
stress state must satisfy _F = 0

_�t þ m
_skk

3
þ _p

� �
¼ _b� _m

skk

3
þ p

� �
ðB2Þ

The terms _b and _m on the right-hand side of (B2) are the
evolution of the yield criterion parameters. We define a
hardening term h such that

_b� _m
skk

3
þ p

� �
¼ h _gpl ðB3Þ

where _gpl is the rate of the equivalent plastic shear strain
(gpl) and, for conciseness, used to represent what was dpg/dt
in part 1:

_gpl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Dp

ij �
1

3
dijDp

kk

� �
Dp

ij �
1

3
dijDp

mm

� �s
ðB4Þ

Here if we take m to be constant, then _m = 0 and the
evolution of the yield surface results from changes in the
cohesion b and is given by

_b ¼ h _gpl ðB5Þ

From (B2) and (B3),

_gpl ¼ 1

h
_�t þ m

_skk

3
þ _p

� �� �
ðB6Þ

and combining (19) and (B6),

_gpl ¼ 1

hþ mbKB=a
_�t þ 1� Bð Þm _skk

3

� �� �
ðB7Þ

This equation defines the effective internal friction
parameter mu and effective hardening parameter hu as

mu ¼ 1� Bð Þm hu ¼ hþ mbKB
a

ðB8Þ

[43] Undrained conditions introduce a new internal fric-
tion parameter, mu. Under such conditions, changes in the
deviatoric portion of the stress alone will not result in
changes in pore pressure; therefore, the yield point above
a given initial effective isotropic stress on a plot as in
Figure 2 remains unchanged from yield point under drained
conditions for the same initial effective isotropic stress.
However, the introduction of mu necessitates the introduc-
tion of a corresponding effective cohesion, bu:

bu ¼ b� Bmso
kk=3 ðB9Þ

[44] Thus, under undrained conditions the yield criterion
F becomes

F ¼ �t þ mu

skk

3

� �
� bu ðB10Þ

Additionally, because the hardening h is replaced by an
undrained value hu, from equations (B2), (B7), (B9) and
taking m to be constant,

_bu ¼ hu _gpl ðB11Þ

[45] Since plastic dilatancy changes (reduces) pore pres-
sure, there is some feedback from plastic dilatation on the
elastic strains. This is accounted for by expressing the
elastic strain rate as the sum of the regular undrained elastic
response DR e

ij , plus a correction to account for pore pressure
changes due to plastic dilatancy DP e

ij :

De
ij ¼ DR e

ij þDP e
ij ðB12Þ
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where the regular undrained elastic response is expressed in
(7). For positive plastic dilatancy, the reduction in pore
pressure will have the effect of reducing the elastic strain.
This is accounted for in Dij

Pe by

DP e
kk ¼ � a

K

KB

a
b
_�t þ m 1� Bð Þ _skk=3

hþ mbKB=a

� �
ðB13Þ

where the term inside the brackets is the term in (19) giving
the increment in pore pressure due to plastic dilatancy.
[46] Consequently, we define a contribution of plastic

dilatancy to strain as a sum of changes in strain due to the
plastic dilatancy itself and the feedback effect this dilatancy
has on elastic strains:

Dp
kk þDP e

kk ¼ 1� Bð Þb
_�t þ m 1� Bð Þ _skk=3

hþ mbKB=a
ðB14Þ

and we can thus define the effective plastic dilatancy as

bu ¼ 1� Bð Þb ðB15Þ
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